Theoretical model for superluminal and slow light in erbium-doped optical fibers: enhancement of the frequency response by pump modulation

Abstract

Superluminal and slow-light propagation in erbium-doped optical fibers are theoretically modeled. The pump and signal fields are allowed to be intensity modulated at the same frequency, and propagation effects are included in the model. The levels of advancement, delay, and distortion are determined as functions of system parameters such as modulation frequency, input pump power, modulation indexes of the pump and signal powers, input signal power, fiber length, and the relative phase of the pump and signal modulation. Two methods are analyzed for enhancing the frequency response while ensuring that distortion values remain tolerable. The first method assumes no modulation of the pump wave, although the pump power is adjusted for each signal modulation frequency. A flat frequency response for frequencies up to several kilohertz is obtained, although signal advancements are limited to low values. In the second method, the pump power is modulated with a phase that needs to be controlled with respect to that of the signal. Advancements and delays are increased by this procedure, and distortion values remain tolerable. The frequency response is not made worse for advancements and it is improved for delays. Moreover, absorption need not accompany slow light for this method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. 1.

    D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuck, Phys. Rev. Lett. 83, 1767 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z.M. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005)

    ADS  Article  Google Scholar 

  6. 6.

    K.Y. Song, M. González-Herráez, L. Thévenaz, Opt. Express 13, 82 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    M. González-Herráez, K.Y. Song, L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    J.E. Sharping, Y. Okawachi, A.L. Gaeta, Opt. Express 13, 6092 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    X. Zhao, P. Palinginis, B. Pesala, C.J. Chang-Hasnain, P. Hemmer, Opt. Express 13, 7899 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    E. Baldit, K. Bencheikh, P. Monnier, J.A. Levenson, V. Rouget, Phys. Rev. Lett. 95, 143601 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    M. González Herráez, K.Y. Song, L. Thévenaz, Opt. Express 14, 1395 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    H. Su, S.L. Chuang, Appl. Phys. Lett. 88, 061102 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    B. Pesala, Z. Chen, A.V. Uskov, C. Chang-Hasnain, Opt. Express 14, 12968 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    A. Schweinsberg, N.N. Lepeshkin, M.S. Bigelow, R.W. Boyd, S. Jarabo, Europhys. Lett. 73, 218 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    A. Lezama, A.M. Akulshin, A.I. Sidorov, P. Hannaford, Phys. Rev. A 73, 033806 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    Z. Lu, Y. Dong, Q. Li, Opt. Express 15, 1871 (2007)

    ADS  Article  Google Scholar 

  17. 17.

    Z.C. Zhuo, B.S. Ham, Eur. Phys. J. D 49, 117 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    Y. Zhao, H.W. Zhao, X.Y. Zhang, B. Yuan, S. Zhang, Opt. Laser Technol. 41, 517 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    B. Pesala, F. Sedgwick, A.V. Uskov, C. Chang-Hasnain, Opt. Express 17, 2188 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    R.S. Tucker, P.C. Ku, C.J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, Opt. Express 14, 5877 (2006)

    ADS  Article  Google Scholar 

  22. 22.

    S.J.B. Yoo, J. Lightwave Technol. 24, 4468 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    R.S. Tucker, J. Lightwave Technol. 24, 4655 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    B. Zhang, L. Yan, I. Fazal, L. Zhang, A.E. Willner, Z. Zhu, D.J. Gauthier, Opt. Express 15, 1878 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    A. Zadok, O. Raz, A. Eyal, M. Tur, IEEE Photonics Technol. Lett. 19, 462 (2007)

    ADS  Article  Google Scholar 

  26. 26.

    P.C. Ku, C.J. Chang-Hasnain, S.L. Chuang, J. Phys. D, Appl. Phys. 40, R93 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    L. Xing, L. Zhan, S. Luo, Y. Xia, IEEE J. Quantum Electron. 44, 1133 (2008)

    Article  Google Scholar 

  28. 28.

    R.M. Camacho, C.J. Broadbent, I. Ali-Khan, J.C. Howell, Phys. Rev. Lett. 98, 043902 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    Z. Shi, R.W. Boyd, D.J. Gauthier, C.C. Dudley, Opt. Lett. 32, 915 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    Z. Shi, R.W. Boyd, Phys. Rev. Lett. 99, 240801 (2007)

    ADS  Article  Google Scholar 

  31. 31.

    J. Freeman, J. Conradi, IEEE Photonics Technol. Lett. 5, 224 (1993)

    ADS  Article  Google Scholar 

  32. 32.

    S. Jarabo, J. Opt. Soc. Am. B 14, 1846 (1997)

    ADS  Article  Google Scholar 

  33. 33.

    S. Novak, A. Moesle, J. Lightwave Technol. 20, 975 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006)

    ADS  Article  Google Scholar 

  35. 35.

    H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H.J. Chang, R.W. Boyd, Q.H. Park, D.J. Gauthier, Opt. Lett. 32, 906 (2007)

    ADS  Article  Google Scholar 

  36. 36.

    S. Melle, O.G. Calderón, F. Carreño, E. Cabrera, M.A. Antón, S. Jarabo, Opt. Commun. 279, 53 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    W. Qiu, Y.D. Zhang, J.B. Ye, N. Wang, J.F. Wang, H. Tian, P. Yuan, Chin. Phys. Lett. 25, 489 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    F. Arrieta-Yañez, S. Melle, O.G. Calderón, M.A. Antón, F. Carreño, Phys. Rev. A 80, 011804(R) (2009)

    ADS  Article  Google Scholar 

  39. 39.

    H. Shin, A. Schweinsberg, R.W. Boyd, Opt. Commun. 282, 2085 (2009)

    ADS  Article  Google Scholar 

  40. 40.

    S. Jarabo, M.A. Rebolledo, Appl. Opt. 34, 6158 (1995)

    ADS  Article  Google Scholar 

  41. 41.

    S. Jarabo, J.M. Álvarez, Appl. Opt. 35, 4759 (1996)

    ADS  Article  Google Scholar 

  42. 42.

    S. Jarabo, I.J. Sola, J. Sáez-Landete, J. Opt. Soc. Am. B 20, 1204 (2003)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Jarabo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jarabo, S., Schweinsberg, A., Lepshkin, N.N. et al. Theoretical model for superluminal and slow light in erbium-doped optical fibers: enhancement of the frequency response by pump modulation. Appl. Phys. B 107, 717–732 (2012). https://doi.org/10.1007/s00340-012-5029-2

Download citation

Keywords

  • Modulation Frequency
  • Pump Power
  • Signal Power
  • Modulation Index
  • Signal Distortion