Skip to main content
Log in

Theoretical model for superluminal and slow light in erbium-doped optical fibers: enhancement of the frequency response by pump modulation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Superluminal and slow-light propagation in erbium-doped optical fibers are theoretically modeled. The pump and signal fields are allowed to be intensity modulated at the same frequency, and propagation effects are included in the model. The levels of advancement, delay, and distortion are determined as functions of system parameters such as modulation frequency, input pump power, modulation indexes of the pump and signal powers, input signal power, fiber length, and the relative phase of the pump and signal modulation. Two methods are analyzed for enhancing the frequency response while ensuring that distortion values remain tolerable. The first method assumes no modulation of the pump wave, although the pump power is adjusted for each signal modulation frequency. A flat frequency response for frequencies up to several kilohertz is obtained, although signal advancements are limited to low values. In the second method, the pump power is modulated with a phase that needs to be controlled with respect to that of the signal. Advancements and delays are increased by this procedure, and distortion values remain tolerable. The frequency response is not made worse for advancements and it is improved for delays. Moreover, absorption need not accompany slow light for this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuck, Phys. Rev. Lett. 83, 1767 (1999)

    Article  ADS  Google Scholar 

  2. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  3. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)

    Article  ADS  Google Scholar 

  4. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)

    Article  ADS  Google Scholar 

  5. Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z.M. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005)

    Article  ADS  Google Scholar 

  6. K.Y. Song, M. González-Herráez, L. Thévenaz, Opt. Express 13, 82 (2005)

    Article  ADS  Google Scholar 

  7. M. González-Herráez, K.Y. Song, L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005)

    Article  ADS  Google Scholar 

  8. J.E. Sharping, Y. Okawachi, A.L. Gaeta, Opt. Express 13, 6092 (2005)

    Article  ADS  Google Scholar 

  9. X. Zhao, P. Palinginis, B. Pesala, C.J. Chang-Hasnain, P. Hemmer, Opt. Express 13, 7899 (2005)

    Article  ADS  Google Scholar 

  10. E. Baldit, K. Bencheikh, P. Monnier, J.A. Levenson, V. Rouget, Phys. Rev. Lett. 95, 143601 (2005)

    Article  ADS  Google Scholar 

  11. M. González Herráez, K.Y. Song, L. Thévenaz, Opt. Express 14, 1395 (2006)

    Article  ADS  Google Scholar 

  12. H. Su, S.L. Chuang, Appl. Phys. Lett. 88, 061102 (2006)

    Article  ADS  Google Scholar 

  13. B. Pesala, Z. Chen, A.V. Uskov, C. Chang-Hasnain, Opt. Express 14, 12968 (2006)

    Article  ADS  Google Scholar 

  14. A. Schweinsberg, N.N. Lepeshkin, M.S. Bigelow, R.W. Boyd, S. Jarabo, Europhys. Lett. 73, 218 (2006)

    Article  ADS  Google Scholar 

  15. A. Lezama, A.M. Akulshin, A.I. Sidorov, P. Hannaford, Phys. Rev. A 73, 033806 (2006)

    Article  ADS  Google Scholar 

  16. Z. Lu, Y. Dong, Q. Li, Opt. Express 15, 1871 (2007)

    Article  ADS  Google Scholar 

  17. Z.C. Zhuo, B.S. Ham, Eur. Phys. J. D 49, 117 (2008)

    Article  ADS  Google Scholar 

  18. Y. Zhao, H.W. Zhao, X.Y. Zhang, B. Yuan, S. Zhang, Opt. Laser Technol. 41, 517 (2009)

    Article  ADS  Google Scholar 

  19. B. Pesala, F. Sedgwick, A.V. Uskov, C. Chang-Hasnain, Opt. Express 17, 2188 (2009)

    Article  ADS  Google Scholar 

  20. R.S. Tucker, P.C. Ku, C.J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005)

    Article  ADS  Google Scholar 

  21. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, Opt. Express 14, 5877 (2006)

    Article  ADS  Google Scholar 

  22. S.J.B. Yoo, J. Lightwave Technol. 24, 4468 (2006)

    Article  ADS  Google Scholar 

  23. R.S. Tucker, J. Lightwave Technol. 24, 4655 (2006)

    Article  ADS  Google Scholar 

  24. B. Zhang, L. Yan, I. Fazal, L. Zhang, A.E. Willner, Z. Zhu, D.J. Gauthier, Opt. Express 15, 1878 (2007)

    Article  ADS  Google Scholar 

  25. A. Zadok, O. Raz, A. Eyal, M. Tur, IEEE Photonics Technol. Lett. 19, 462 (2007)

    Article  ADS  Google Scholar 

  26. P.C. Ku, C.J. Chang-Hasnain, S.L. Chuang, J. Phys. D, Appl. Phys. 40, R93 (2007)

    Article  ADS  Google Scholar 

  27. L. Xing, L. Zhan, S. Luo, Y. Xia, IEEE J. Quantum Electron. 44, 1133 (2008)

    Article  Google Scholar 

  28. R.M. Camacho, C.J. Broadbent, I. Ali-Khan, J.C. Howell, Phys. Rev. Lett. 98, 043902 (2007)

    Article  ADS  Google Scholar 

  29. Z. Shi, R.W. Boyd, D.J. Gauthier, C.C. Dudley, Opt. Lett. 32, 915 (2007)

    Article  ADS  Google Scholar 

  30. Z. Shi, R.W. Boyd, Phys. Rev. Lett. 99, 240801 (2007)

    Article  ADS  Google Scholar 

  31. J. Freeman, J. Conradi, IEEE Photonics Technol. Lett. 5, 224 (1993)

    Article  ADS  Google Scholar 

  32. S. Jarabo, J. Opt. Soc. Am. B 14, 1846 (1997)

    Article  ADS  Google Scholar 

  33. S. Novak, A. Moesle, J. Lightwave Technol. 20, 975 (2002)

    Article  ADS  Google Scholar 

  34. G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006)

    Article  ADS  Google Scholar 

  35. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H.J. Chang, R.W. Boyd, Q.H. Park, D.J. Gauthier, Opt. Lett. 32, 906 (2007)

    Article  ADS  Google Scholar 

  36. S. Melle, O.G. Calderón, F. Carreño, E. Cabrera, M.A. Antón, S. Jarabo, Opt. Commun. 279, 53 (2007)

    Article  ADS  Google Scholar 

  37. W. Qiu, Y.D. Zhang, J.B. Ye, N. Wang, J.F. Wang, H. Tian, P. Yuan, Chin. Phys. Lett. 25, 489 (2008)

    Article  ADS  Google Scholar 

  38. F. Arrieta-Yañez, S. Melle, O.G. Calderón, M.A. Antón, F. Carreño, Phys. Rev. A 80, 011804(R) (2009)

    Article  ADS  Google Scholar 

  39. H. Shin, A. Schweinsberg, R.W. Boyd, Opt. Commun. 282, 2085 (2009)

    Article  ADS  Google Scholar 

  40. S. Jarabo, M.A. Rebolledo, Appl. Opt. 34, 6158 (1995)

    Article  ADS  Google Scholar 

  41. S. Jarabo, J.M. Álvarez, Appl. Opt. 35, 4759 (1996)

    Article  ADS  Google Scholar 

  42. S. Jarabo, I.J. Sola, J. Sáez-Landete, J. Opt. Soc. Am. B 20, 1204 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jarabo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarabo, S., Schweinsberg, A., Lepshkin, N.N. et al. Theoretical model for superluminal and slow light in erbium-doped optical fibers: enhancement of the frequency response by pump modulation. Appl. Phys. B 107, 717–732 (2012). https://doi.org/10.1007/s00340-012-5029-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5029-2

Keywords

Navigation