Advertisement

Applied Physics B

, Volume 107, Issue 3, pp 717–732 | Cite as

Theoretical model for superluminal and slow light in erbium-doped optical fibers: enhancement of the frequency response by pump modulation

  • S. Jarabo
  • A. Schweinsberg
  • N. N. Lepshkin
  • M. S. Bigelow
  • R. W. Boyd
Article

Abstract

Superluminal and slow-light propagation in erbium-doped optical fibers are theoretically modeled. The pump and signal fields are allowed to be intensity modulated at the same frequency, and propagation effects are included in the model. The levels of advancement, delay, and distortion are determined as functions of system parameters such as modulation frequency, input pump power, modulation indexes of the pump and signal powers, input signal power, fiber length, and the relative phase of the pump and signal modulation. Two methods are analyzed for enhancing the frequency response while ensuring that distortion values remain tolerable. The first method assumes no modulation of the pump wave, although the pump power is adjusted for each signal modulation frequency. A flat frequency response for frequencies up to several kilohertz is obtained, although signal advancements are limited to low values. In the second method, the pump power is modulated with a phase that needs to be controlled with respect to that of the signal. Advancements and delays are increased by this procedure, and distortion values remain tolerable. The frequency response is not made worse for advancements and it is improved for delays. Moreover, absorption need not accompany slow light for this method.

Keywords

Modulation Frequency Pump Power Signal Power Modulation Index Signal Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuck, Phys. Rev. Lett. 83, 1767 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z.M. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    K.Y. Song, M. González-Herráez, L. Thévenaz, Opt. Express 13, 82 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    M. González-Herráez, K.Y. Song, L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Sharping, Y. Okawachi, A.L. Gaeta, Opt. Express 13, 6092 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    X. Zhao, P. Palinginis, B. Pesala, C.J. Chang-Hasnain, P. Hemmer, Opt. Express 13, 7899 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    E. Baldit, K. Bencheikh, P. Monnier, J.A. Levenson, V. Rouget, Phys. Rev. Lett. 95, 143601 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    M. González Herráez, K.Y. Song, L. Thévenaz, Opt. Express 14, 1395 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    H. Su, S.L. Chuang, Appl. Phys. Lett. 88, 061102 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    B. Pesala, Z. Chen, A.V. Uskov, C. Chang-Hasnain, Opt. Express 14, 12968 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    A. Schweinsberg, N.N. Lepeshkin, M.S. Bigelow, R.W. Boyd, S. Jarabo, Europhys. Lett. 73, 218 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Lezama, A.M. Akulshin, A.I. Sidorov, P. Hannaford, Phys. Rev. A 73, 033806 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    Z. Lu, Y. Dong, Q. Li, Opt. Express 15, 1871 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Z.C. Zhuo, B.S. Ham, Eur. Phys. J. D 49, 117 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhao, H.W. Zhao, X.Y. Zhang, B. Yuan, S. Zhang, Opt. Laser Technol. 41, 517 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    B. Pesala, F. Sedgwick, A.V. Uskov, C. Chang-Hasnain, Opt. Express 17, 2188 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    R.S. Tucker, P.C. Ku, C.J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, Opt. Express 14, 5877 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    S.J.B. Yoo, J. Lightwave Technol. 24, 4468 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    R.S. Tucker, J. Lightwave Technol. 24, 4655 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    B. Zhang, L. Yan, I. Fazal, L. Zhang, A.E. Willner, Z. Zhu, D.J. Gauthier, Opt. Express 15, 1878 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    A. Zadok, O. Raz, A. Eyal, M. Tur, IEEE Photonics Technol. Lett. 19, 462 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    P.C. Ku, C.J. Chang-Hasnain, S.L. Chuang, J. Phys. D, Appl. Phys. 40, R93 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    L. Xing, L. Zhan, S. Luo, Y. Xia, IEEE J. Quantum Electron. 44, 1133 (2008) CrossRefGoogle Scholar
  28. 28.
    R.M. Camacho, C.J. Broadbent, I. Ali-Khan, J.C. Howell, Phys. Rev. Lett. 98, 043902 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    Z. Shi, R.W. Boyd, D.J. Gauthier, C.C. Dudley, Opt. Lett. 32, 915 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Shi, R.W. Boyd, Phys. Rev. Lett. 99, 240801 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    J. Freeman, J. Conradi, IEEE Photonics Technol. Lett. 5, 224 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    S. Jarabo, J. Opt. Soc. Am. B 14, 1846 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    S. Novak, A. Moesle, J. Lightwave Technol. 20, 975 (2002) ADSCrossRefGoogle Scholar
  34. 34.
    G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H.J. Chang, R.W. Boyd, Q.H. Park, D.J. Gauthier, Opt. Lett. 32, 906 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    S. Melle, O.G. Calderón, F. Carreño, E. Cabrera, M.A. Antón, S. Jarabo, Opt. Commun. 279, 53 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    W. Qiu, Y.D. Zhang, J.B. Ye, N. Wang, J.F. Wang, H. Tian, P. Yuan, Chin. Phys. Lett. 25, 489 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    F. Arrieta-Yañez, S. Melle, O.G. Calderón, M.A. Antón, F. Carreño, Phys. Rev. A 80, 011804(R) (2009) ADSCrossRefGoogle Scholar
  39. 39.
    H. Shin, A. Schweinsberg, R.W. Boyd, Opt. Commun. 282, 2085 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    S. Jarabo, M.A. Rebolledo, Appl. Opt. 34, 6158 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    S. Jarabo, J.M. Álvarez, Appl. Opt. 35, 4759 (1996) ADSCrossRefGoogle Scholar
  42. 42.
    S. Jarabo, I.J. Sola, J. Sáez-Landete, J. Opt. Soc. Am. B 20, 1204 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Jarabo
    • 1
  • A. Schweinsberg
    • 2
  • N. N. Lepshkin
    • 3
  • M. S. Bigelow
    • 4
  • R. W. Boyd
    • 2
    • 5
  1. 1.Departamento de Física Aplicada, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.The Institute of OpticsUniversity of RochesterRochesterUSA
  3. 3.San Francisco State UniversitySan FranciscoUSA
  4. 4.St. Cloud State UniversitySt. CloudUSA
  5. 5.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations