Skip to main content
Log in

Water-based enhancement of the resonant photoacoustic signal from methane–air samples excited at 3.3 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Photoacoustic spectroscopy is widely applied for trace-gas detection because of its sensitivity and low detection limit. In a previous work, where we studied the potential application to methane monitoring under a resonant excitation at 3.3 μm, we showed that the signal from methane–nitrogen mixtures decreases with the addition of oxygen. This effect is due to an energy exchange between the ν 4 asymmetric stretching mode of methane and the first metastable level of oxygen. This process makes oxygen accumulate energy, thus hindering the generation of the photoacoustic signal. In this work, we study the possible addition of water, as a good collisional partner of oxygen, in order to obtain a greater sensitivity. We develop a model based on rate equations and find good agreement between theory and measurements. The experiment is carried out with a novel cell of rectangular cross section and a Q factor of 165±1. We find that 0.7 % water content is large enough to obtain a signal as high as in the methane–nitrogen case at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  2. S. Bernegger, M.W. Sigrist, Infrared Phys. 30, 375 (1990)

    Article  ADS  Google Scholar 

  3. A. Miklós, C. Lim, W. Hsiang, G. Liang A.H. Kung, A. Schmohl, P. Hess, Appl. Opt. 41, 2985 (2002)

    Article  ADS  Google Scholar 

  4. S. Schilt, J.-P. Besson, L. Thévenaz, Appl. Phys. B 82, 319 (2006)

    Article  ADS  Google Scholar 

  5. N. Barreiro, A. Vallespi, G. Santiago, V. Slezak, A. Peuriot, Appl. Phys. B 104, 983 (2011)

    Article  ADS  Google Scholar 

  6. D.L. Huestis, J. Phys. Chem. A 110, 6638 (2006)

    Article  Google Scholar 

  7. A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, S. Mcwhorter, B. Ashcroft, Appl. Phys. B 92, 103 (2008)

    Article  ADS  Google Scholar 

  8. A. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, Appl. Spectrosc. 57, 900 (2003)

    Article  ADS  Google Scholar 

  9. T. Laurila, H. Cattaneo, T. Pöyhönen, V. Koskinen, J. Kauppinen, R. Hernberg, Appl. Phys. B 83, 285 (2006)

    Article  ADS  Google Scholar 

  10. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 87, 157 (2007)

    Article  ADS  Google Scholar 

  11. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301 (2006)

    Article  ADS  Google Scholar 

  12. A.A. Kosterev, T.S. Mosely, F.K. Tittel, Appl. Phys. B 85, 295 (2006)

    Article  ADS  Google Scholar 

  13. M. López-Puertas, G. Zaragoza, B.J. Kerridge, F.W. Taylor, J. Geophys. Res. 100, 9131 (1995)

    Article  ADS  Google Scholar 

  14. L. Doyennette, F. Menard-Bourcin, J. Menard, C. Boursier, C. Camy-Peyret, J. Phys. Chem. A 102, 3849 (1998)

    Article  Google Scholar 

  15. C. Boursier, J. Ménard, L. Doyennette, F. Menard-Bourcin, J. Phys. Chem. A 107, 5280 (2003)

    Article  Google Scholar 

  16. C. Boursier, J. Ménard, L. Doyennette, F. Menard-Bourcin, J. Phys. Chem. A 111, 7022 (2007)

    Article  Google Scholar 

  17. H.E. Bass, R.G. Keeton, D. Williams, J. Acoust. Soc. Am. 60, 74 (1976)

    Article  ADS  Google Scholar 

  18. A. Karbach, P. Hess, J. Appl. Phys. 58, 3851 (1985)

    Article  ADS  Google Scholar 

  19. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, C. Hüglin, Spectrochim. Acta, Part A 60, 3259 (2004)

    Article  ADS  Google Scholar 

  20. S. Bernegger, M.W. Sigrist, Appl. Phys. B 44, 125 (1987)

    Article  ADS  Google Scholar 

  21. P.L. Meyer, M.W. Sigrist, Rev. Sci. Instrum. 61, 1779 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. J. Luque, O. Vilar, F. Gonzalez and CITEDEF’s workshop for their technical assistance. This work was carried out with equipment acquired with funds from the grants PME 2006 and PICT 2004 of the FONCYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Barreiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreiro, N., Peuriot, A., Santiago, G. et al. Water-based enhancement of the resonant photoacoustic signal from methane–air samples excited at 3.3 μm. Appl. Phys. B 108, 369–375 (2012). https://doi.org/10.1007/s00340-012-5018-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5018-5

Keywords

Navigation