Skip to main content
Log in

Locking the frequency of lasers to an optical cavity at the 1.6×10−17 relative instability level

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We stabilized the frequencies of two independent Nd:YAG lasers to two adjacent longitudinal modes of a high-finesse Fabry–Pérot resonator and obtained a beat frequency instability of 6.3 mHz at an integration time of 40 s. Referred to a single laser, this is 1.6×10−17 relative to the laser frequency, and 1.3×10−6 relative to the full width at half maximum of the cavity resonance. The amplitude spectrum of the beat signal had a FWHM of 7.8 mHz. This stable frequency locking is of importance for next-generation optical clock interrogation lasers and fundamental physics tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Consider an optical path of length L which changes by ΔL over a time τ. The change of the phase of a light wave over the time τ corresponds to a frequency shift Δν. For a single laser, the frequency change is Δν=ΔLν/(). The change of the beat frequency of two lasers is Δf=Δν 1Δν 2. In the case of independent optical paths, the beat frequency instability is equal to the square root of the sum of squares of the frequency instabilities in the two optical paths, approximately \(\sqrt{2}\varDelta L \nu/(c\tau)\), if the paths instabilities are similar, ΔL 1ΔL 2ΔL. However, in the case of identical optical paths, because ΔL 1=ΔL 2, Δf=ΔL(ν 1ν 2)/(), a value smaller by approx. \(f/\sqrt{2} \nu\).

References

  1. M. Takamoto, F.L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  2. A. Derevianko, H. Katori, Rev. Mod. Phys. 83, 331 (2011)

    Article  ADS  Google Scholar 

  3. H.S. Margolis, J. Phys. B, At. Mol. Opt. Phys. 42, 154017 (2009)

    Article  ADS  Google Scholar 

  4. B.P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen et al., Rep. Prog. Phys. 72, 076901 (2009)

    Article  ADS  Google Scholar 

  5. C. Eisele, A.Y. Nevsky, S. Schiller, Phys. Rev. Lett. 103, 090401 (2009)

    Article  ADS  Google Scholar 

  6. V.A. Kostelecký, N. Russell, Rev. Mod. Phys. 83, 11 (2011)

    Article  ADS  Google Scholar 

  7. Y.Y. Jiang, A.D. Ludlow, N.D. Lemke, R.W. Fox, J.A. Sherman, L.S. Ma, C.W. Oates, Nat. Photonics 5, 158 (2011)

    Article  ADS  Google Scholar 

  8. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, arXiv:1112.3854 (2011)

  9. K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  10. M. Notcutt, L.-S. Ma, A.D. Ludlow, S.M. Foreman, J. Ye, J.L. Hall, Phys. Rev. A 73, 031804 (2006)

    Article  ADS  Google Scholar 

  11. S. Seel, R. Storz, G. Ruoso, J. Mlynek, S. Schiller, Phys. Rev. Lett. 78, 4741 (1997)

    Article  ADS  Google Scholar 

  12. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, A. Peters, Phys. Rev. Lett. 91, 020401 (2003)

    Article  Google Scholar 

  13. C. Salomon, D. Hils, J.L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988)

    Article  ADS  Google Scholar 

  14. T. Day, E.K. Gustafson, R.L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992)

    Article  ADS  Google Scholar 

  15. G. Ruoso, R. Storz, S. Seel, S. Schiller, J. Mlynek, Opt. Commun. 133, 259 (1997)

    Article  ADS  Google Scholar 

  16. J. von Zanthier, M. Eichenseer, A.Y. Nevsky, M. Okhapkin, C. Schwedes, H. Walther, Laser Phys. 15, 1021 (2005)

    Google Scholar 

  17. C. Eisele, M. Okhapkin, A. Nevsky, S. Schiller, Opt. Commun. 281, 1189 (2008)

    Article  ADS  Google Scholar 

  18. T. Legero, T. Kessler, U. Sterr, J. Opt. Soc. Am. B 27, 914 (2010)

    Article  ADS  Google Scholar 

  19. H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, A. Peters, Opt. Lett. 28, 2186 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was performed in the framework of project AO/1-5902/09/D/JR of the European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q.-F. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, QF., Nevsky, A. & Schiller, S. Locking the frequency of lasers to an optical cavity at the 1.6×10−17 relative instability level. Appl. Phys. B 107, 679–683 (2012). https://doi.org/10.1007/s00340-012-5014-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5014-9

Keywords

Navigation