Advertisement

Applied Physics B

, Volume 110, Issue 2, pp 147–154 | Cite as

Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes

  • T. SvenssonEmail author
  • E. Adolfsson
  • M. Burresi
  • R. Savo
  • C. T. Xu
  • D. S. Wiersma
  • S. Svanberg
Article

Abstract

Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 μm as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized.

Keywords

Porous Medium Mercury Intrusion Porosimetry Tunable Diode Laser Absorption Spectroscopy Wall Collision Barium Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Swedish Research Council through a direct grant, a Linnaeus grant to the Lund Laser Centre, and a postdoctoral fellowship granted to T.S. This work also benefited from the Network of Excellence on Nanophotonics for Energy Efficiency.

References

  1. 1.
    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994) CrossRefGoogle Scholar
  2. 2.
    P. Wong, Methods in the Physics of Porous Media (Academic Press, San Diego, 1999) Google Scholar
  3. 3.
    C.C. Egger, C. du Fresne, V.I. Raman, V. Schädler, T. Frechen, S.V. Roth, P. Müller-Buschbaum, Langmuir 24, 5877 (2008) CrossRefGoogle Scholar
  4. 4.
    E.W. Washburn, Phys. Rev. 17, 273 (1921) ADSCrossRefGoogle Scholar
  5. 5.
    C.A. León y León, Adv. Colloid Interface Sci. 76, 341 (1998) CrossRefGoogle Scholar
  6. 6.
    F. Rouquérol, J. Rouquérol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, San Diego, 1999) Google Scholar
  7. 7.
    S. Lowell, Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density (Springer, Berlin, 2004) CrossRefGoogle Scholar
  8. 8.
    N. Kanellopoulos, Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing (Taylor and Francis, New York, 2011) CrossRefGoogle Scholar
  9. 9.
    W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T.-F. Wong, J. Geophys. Res. 105, 21509 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    A. Sakdinawat, D. Attwood, Nat. Photonics 4, 840 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    A.T. Watson, C.T.P. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31, 343 (1997) CrossRefGoogle Scholar
  12. 12.
    T. Svensson, Z. Shen, Appl. Phys. Lett. 96, 021107 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, Phys. Rev. A 84, 042705 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Opt. Lett. 26, 16 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    R.H. Johnson, M.W.P. Strandberg, Phys. Rev. 86, 811 (1952) ADSCrossRefGoogle Scholar
  17. 17.
    M. Danos, S. Geschwind, Phys. Rev. 91, 1159 (1953) ADSCrossRefGoogle Scholar
  18. 18.
    S.C.M. Luijendijk, J. Phys. B, At. Mol. Opt. Phys. 8, 2995 (1975) ADSCrossRefGoogle Scholar
  19. 19.
    P.E. Wagner, R.M. Somers, J.L. Jenkins, J. Phys. B, At. Mol. Opt. Phys. 14, 4763 (1981) ADSCrossRefGoogle Scholar
  20. 20.
    S. Ghosh, J.E. Sharping, D.G. Ouzounov, A.L. Gaeta, Phys. Rev. Lett. 94, 093902 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    S. Ghosh, A.R. Bhagwat, C.K. Renshaw, S. Goh, A.L. Gaeta, B.J. Kirby, Phys. Rev. Lett. 97, 023603 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    J. Hald, J.C. Petersen, J. Henningsen, Phys. Rev. Lett. 98, 213902 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    T. Svensson, E. Alerstam, J. Johansson, S. Andersson-Engels, Opt. Lett. 35, 1740 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    T. Svensson, M. Lewander, S. Svanberg, Opt. Express 18, 16460 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    L.F. Gate, J. Phys. D, Appl. Phys. 5, 837 (1972) ADSCrossRefGoogle Scholar
  26. 26.
    J.G.J. Peelen, R. Metselaa, J. Appl. Phys. 45, 216 (1974) ADSCrossRefGoogle Scholar
  27. 27.
    W.W. Chen, B. Dunn, J. Am. Ceram. Soc. 76, 2086 (1993) CrossRefGoogle Scholar
  28. 28.
    J. Manara, R. Caps, F. Raether, J. Fricke, Opt. Commun. 168, 237 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    R. Springer, F. Raether, R. Caps, J. Manara, High Temp., High Press. 32, 385 (2000) CrossRefGoogle Scholar
  30. 30.
    J. Manara, R. Caps, J. Fricke, Int. J. Thermophys. 26, 531 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    A. Wolf, B. Terheiden, R. Brendel, J. Appl. Phys. 104, 033106 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    D.L. Wood, K. Nassau, Appl. Opt. 21, 2978 (1982) ADSCrossRefGoogle Scholar
  33. 33.
    L.A. Dombrovsky, H.K. Tagne, D. Baillis, L. Gremillard, Infrared Phys. Technol. 51, 44 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    J.G. Rivas, A. Lagendijk, R.W. Tjerkstra, D. Vanmaekelbergh, J.J. Kelly, Appl. Phys. Lett. 80, 4498 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    M. Störzer, P. Gross, C.M. Aegerter, G. Maret, Phys. Rev. Lett. 96, 063904 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    M. Reufer, L.F. Rojas-Ochoa, S. Eiden, J.J. Saenz, F. Scheffold, Appl. Phys. Lett. 91, 171904 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    J. Manara, M. Reidinger, S. Korder, M. Arduini-Schuster, J. Fricke, Int. J. Thermophys. 28, 1628 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C.J. Oton, L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    D. Contini, F. Martelli, G. Zaccanti, Appl. Opt. 36, 4587 (1997) ADSCrossRefGoogle Scholar
  40. 40.
    T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B 90, 345 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    D.A. Long, D.K. Havey, M. Okumura, C.E. Miller, J.T. Hodges, J. Quant. Spectrosc. Radiat. Transf. 111, 2021 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    T. Svensson, M. Andersson, L. Rippe, J. Johansson, S. Folestad, S. Andersson-Engels, Opt. Lett. 33, 80 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    I.M. Vellekoop, P. Lodahl, A. Lagendijk, Phys. Rev. E 71, 056604 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    M.C.W. van Rossum, T.M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233 (1977) ADSCrossRefGoogle Scholar
  46. 46.
    S. Diamond, Cem. Concr. Res. 30, 1517 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. Svensson
    • 1
    • 3
    Email author
  • E. Adolfsson
    • 2
  • M. Burresi
    • 1
  • R. Savo
    • 1
  • C. T. Xu
    • 3
  • D. S. Wiersma
    • 1
  • S. Svanberg
    • 3
  1. 1.European Laboratory for Non-linear Spectroscopy (LENS)Sesto FiorentinoItaly
  2. 2.Ceramic MaterialsSWEREA IVFMölndalSweden
  3. 3.Department of PhysicsLund UniversityLundSweden

Personalised recommendations