Skip to main content

Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers

Abstract

We report on a systematic study of an environmentally stable mode-locked Yb-doped fiber laser operating in the chirped-pulse regime. The linear cavity chirped-pulse fiber laser is constructed with a saturable absorber mirror as nonlinear mode-locking mechanism and a nonlinearity-free transmission-grating-based stretcher/compressor for dispersion management. Mode-locked operation and pulse dynamics from strong normal to strong anomalous total cavity dispersion in the range of +2.5 to −1.6 ps2 is experimentally studied. Strongly positively chirped pulses from 4.3 ps (0.01 ps2) to 39 ps (2.5 ps2) are obtained at normal net-cavity dispersion. In the anomalous dispersion regime, the laser generates average soliton feature negatively chirped pulses with autocorrelation pulse durations from 0.8 ps (−0.07 ps2) to 3.9 ps (−1.6 ps2). The lowered peak power due to the pulse stretching allows one to increase the double pulse threshold. Based on the numerical simulation, different regimes of mode locking are obtained by varying the intra-cavity dispersion, and the characteristics of average soliton, stretched-pulse, wave-breaking-free and chirped-pulse regimes are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. J.W. Nicholson, M. Andrejco, Opt. Express 14, 8160 (2006)

    ADS  Article  Google Scholar 

  2. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, A. Tünnermann Opt. Express 15, 15595 (2007)

    ADS  Article  Google Scholar 

  3. I.N. Duling III, Opt. Lett. 16, 539 (1991)

    ADS  Article  Google Scholar 

  4. K. Tamura, L.E. Nelson, H.A. Haus, E.P. Ippen, Appl. Phys. Lett. 64, 149 (1994)

    ADS  Article  Google Scholar 

  5. H.A. Haus, K. Tamura, L.E. Nelson, E.P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995)

    ADS  Article  Google Scholar 

  6. L.E. Nelson, S.B. Fleischer, G. Lenz, E.P. Ippen, Opt. Lett. 21, 1759 (1996)

    ADS  Article  Google Scholar 

  7. F.Ö. Ilday, J.R. Buckley, H. Lim, F.W. Wise, W.G. Clark, Opt. Lett. 28, 1365 (2003)

    ADS  Article  Google Scholar 

  8. R. Herda, O.G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004)

    ADS  Article  Google Scholar 

  9. A. Chong, W.H. Renninger, F.W. Wise, J. Opt. Soc. Am. B 25, 140 (2008)

    ADS  Article  Google Scholar 

  10. L.M. Zhao, D.Y. Tang, J. Wu, Opt. Lett. 31, 1788 (2006)

    ADS  Article  Google Scholar 

  11. A. Chong, W. Renninger, F. Wise, Opt. Lett. 32, 2408 (2007)

    ADS  Article  Google Scholar 

  12. M. Baumgartl, B. Ortaç, C. Lecaplain, A. Hideur, J. Limpert, A. Tünnermann, Opt. Lett. 35, 2311 (2010)

    ADS  Article  Google Scholar 

  13. B. Ortaç, M. Baumgartl, J. Limpert, A. Tünnermann, Opt. Lett. 34, 1585 (2009)

    ADS  Article  Google Scholar 

  14. C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, A. Hideur, Opt. Lett. 35, 3156 (2010)

    Article  Google Scholar 

  15. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, A. Tünnermann, Opt. Lett. 36, 244 (2011)

    ADS  Article  Google Scholar 

  16. W.H. Renninger, A. Chong, F.W. Wise, Opt. Lett. 33, 3025 (2008)

    Article  Google Scholar 

  17. D.-F. Liu, X.-J. Zhu, C.-H. Wang, J.-J. Yu, E.-X. Fang, J.-J. Wang, Laser Phys. 21, 414 (2011)

    ADS  Article  Google Scholar 

  18. B. Ortaç, M. Plötner, J. Limpert, A. Tünnermann, Opt. Express 15, 16794 (2007)

    ADS  Article  Google Scholar 

  19. S.M.J. Kelly, Electron. Lett. 28, 806 (1992)

    Article  Google Scholar 

  20. M.L. Dennis, I.N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994)

    ADS  Article  Google Scholar 

  21. C. Lecaplain, M. Baumgartl, T. Schreiber, A. Hideur, Opt. Express 19, 26742 (2011)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the German Federal Ministry of Education and Research (BMBF) under contract 13N10773 as well as the Inter Carnot & Fraunhofer program under project APUS. M. Baumgartl acknowledges support from Carl-Zeiss-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baumgartl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baumgartl, M., Ortaç, B., Limpert, J. et al. Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers. Appl. Phys. B 107, 263–274 (2012). https://doi.org/10.1007/s00340-012-5010-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5010-0

Keywords

  • Fiber Laser
  • Saturable Absorber
  • Chirp Pulse
  • Negative Dispersion
  • Group Delay Dispersion