Skip to main content
Log in

On the quantification of OH*, CH*, and C2* chemiluminescence in flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Absolute concentrations of all important chemiluminescent species, OH–A, CH–A, CH–B, and C2-d have been measured for the first time in methane-oxygen flames at low pressure. The optical detection system for chemiluminescence measurements has been calibrated with Rayleigh and Raman scattering of a cw laser, with the latter approach yielding superior results.

The measured ratio between the concentration of CH–B and CH–A suggests that the electronically excited CH* is formed close to thermal equilibrium. Introduction of different rate constants for reactions leading to CH–A and CH–B were not necessary to explain the experimental results. Results are compared with a recent numerical model. Deviations in profile shape and peak positions are relatively small for stoichiometric flames, but become more pronounced in richer mixtures. Larger discrepancies are observed for the absolute concentrations, depending on the chemiluminescent species and the stoichiometry.

In an attempt to find an alternative method for the quantification of chemiluminescent species, MIR-CRDS has been performed around 3.9 μm. While H2O and OH–X could be measured, the sensitivity was not high enough to detect the low sub-ppb concentration of OH–A—in part due to the limited reflectivity of mirrors in the MIR, in part due to a significant background of hot H2O lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Candel, Proc. Combust. Inst. 29, 1 (2002) –28

    Article  Google Scholar 

  2. F. Biagioli, F. Güthe, B. Schuermans, Exp. Therm. Fluid Sci. 32, 1344 (2008) –1353

    Article  Google Scholar 

  3. Y. Hardalupas, M. Orain, C. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, M.A.J. Hult, F. Hermann, J. Klingmann, Appl. Therm. Eng. 24, 1619 (2004) –1632

    Article  Google Scholar 

  4. P. Gopalakrishnan, M. Bobba, J. Seitzman, Proc. Combust. Inst. 31, 3401 (2007) –3408

    Article  Google Scholar 

  5. J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005)

    Article  Google Scholar 

  6. K. Kohse-Höinghaus, A. Brockhinke, Combust. Explos. Shock Waves 45, 349 (2009)

    Article  Google Scholar 

  7. F. Guethe, D. Guyot, G. Singla, N. Noiray, B. Schuermans, Appl. Phys. B (2012, in press)

  8. A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1974)

    Book  Google Scholar 

  9. A. Brockhinke, J. Krüger, M. Heusing, M. Letzgus, Appl. Phys. B (2012, in print)

  10. G. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005)

    Article  Google Scholar 

  11. J. de Vries, J. Hall, S. Simmons, M. Rickard, D. Kalitan, E. Petersen, Combust. Flame 150, 137 (2007)

    Article  Google Scholar 

  12. E. Petersen, M. Kopp, N. Donato, F. Güthe, Chemiluminescence kinetics models at engine conditions, in Proceedings of ASME Turbo Expo 2011 GT2011, June 6–10, 2011, Vancouver, British Columbia, Canada, 2011

    Google Scholar 

  13. M. Bozkurt, M. Fikri, C. Schulz, Appl. Phys. B (2012, in press)

  14. K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Proc. Combust. Inst. 27, 615 (1998)

    Google Scholar 

  15. G.P. Smith, J. Luque, C. Park, J.B. Jeffries, D.R. Crosley, Combust. Flame 131, 59 (2002)

    Article  Google Scholar 

  16. K. Kohse-Höinghaus, R. Heidenreich, T. Just, Proc. Combust. Inst. 20, 1177 (1984)

    Google Scholar 

  17. W.K. Bischel, D.J. Bamford, L.E. Jusinski, Appl. Opt. 25(7), 1215 (1986)

    Article  ADS  Google Scholar 

  18. J. Luque, D.R. Crosley, Appl. Phys. B, Lasers Opt. 63, 91 (1996)

    Article  ADS  Google Scholar 

  19. M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, Combust. Flame 149(4), 435 (2007)

    Article  Google Scholar 

  20. H.W. Schrötter, H.W. Klöckner, “Raman scattering cross sections in gases and liquids” in Raman Spectroscopy of Gases and Liquids (Springer, New York, 1979)

    Google Scholar 

  21. M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003)

    Google Scholar 

  22. G.R. Alms, A. Burnham, W.H. Flygare, J. Chem. Phys. 63(8), 3321 (1975)

    Article  ADS  Google Scholar 

  23. D.R. Bates, Planet. Space Sci. 32(6), 785 (1984)

    Article  ADS  Google Scholar 

  24. C.M. Penney, J. Opt. Soc. Am. 59(1), 34 (1969)

    Article  ADS  Google Scholar 

  25. C.M. Penney, R.L.S. Peters, M. Lapp, J. Opt. Soc. Am. 64(5), 712 (1974)

    Article  ADS  Google Scholar 

  26. M. Köhler, Systematische Brennstoffuntersuchung mittels quasi-simultaner CRD- und LIF-Spektroskopie, Ph.D. thesis, Universität Bielefeld (2008)

  27. D.R. Crosley, K.J. Rensberger, R.A. Copeland, State selectivity in light emission from flames in selectivity in chemical reactions (1988)

  28. N.L. Garland, D.R. Crosley, Appl. Opt. 24(23), 4229 (1985)

    Article  ADS  Google Scholar 

  29. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (2012, in print)

  30. T. Kathrotia, Reaction Kinetics Modeling of OH*, CH*, and C2* Chemiluminescence, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2011)

  31. M. Tamura, P. Berg, J. Harrington, J. Luque, J. Jeffries, G. Smith, D. Crosley, Combust. Flame 114, 502 (1998)

    Article  Google Scholar 

  32. A. Brockhinke, M. Letzgus, S. Rinne, K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3028 (2006)

    Google Scholar 

  33. J. Scherer, D. Voelkel, D. Rakestraw, Appl. Phys. B 64(6), 699 (1997)

    Article  ADS  Google Scholar 

  34. J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw, J. Chem. Phys. 107(16), 6196 (1997)

    Article  ADS  Google Scholar 

  35. HITRAN web site, http://cfa-www.harvard.edu/HITRAN/

  36. M. Letzgus, A. Brockhinke, K. Kohse-Höinghaus, LASKINv2. http://pc1.uni-bielefeld.de/~laskin

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Katharina Kohse-Höinghaus for generous support and discussions. We thank Dr. Trupti Kathrotia (DLR Stuttgart) for discussions on the reaction kinetics mechanism of chemiluminescent species. Deutsche Forschungsgemeinschaft (DFG) has funded this work under contracts KO 1363/21-2, PAK 116/1, and 116/2 and SFB 686 TP C5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brockhinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nau, P., Krüger, J., Lackner, A. et al. On the quantification of OH*, CH*, and C2* chemiluminescence in flames. Appl. Phys. B 107, 551–559 (2012). https://doi.org/10.1007/s00340-012-5006-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5006-9

Keywords

Navigation