Skip to main content
Log in

Experimental and numerical study of chemiluminescent species in low-pressure flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Chemiluminescence has been observed since the beginning of spectroscopy, nevertheless, important facts still remain unknown. Especially, reaction pathways leading to chemiluminescent species such as OH, CH, \(\mathrm{C}_{2}^{*}\), and \(\mathrm{CO}_{2}^{*}\) are still under debate and cannot be modeled with standard codes for flame simulation. In several cases, even the source species of spectral features observed in flames are unknown. In recent years, there has been renewed interest in chemiluminescence, since it has been shown that this radiation can be used to determine flame parameters such as stoichiometry and heat release under some conditions.

In this work, we present a reaction mechanism which predicts the OH, CH (in A- and B-state), and \(\mathrm{C}_{2}^{*}\) emission strength in lean to fuel-rich stoichiometries. Measurements have been performed in a set of low-pressure flames which have already been well characterized by other methods. The flame front is resolved in these measurements, which allows a comparison of shape and position of the observed chemiluminescence with the respective simulated concentrations. To study the effects of varying fuels, methane flame diluted in hydrogen are measured as well. The 14 investigated premixed methane–oxygen–argon and methane–hydrogen–oxygen–argon flames span a wide parameter field of fuel stoichiometry (ϕ=0.5 to 1.6) and hydrogen content (H2 vol%=0 to 50).

The relative comparison of measured and simulated excited species concentrations shows good agreement. The detailed and reliable modeling for several chemiluminescent species permits correlating heat release with all of these emissions under a large set of flame conditions. It appears from the present study that the normally used product of formaldehyde and OH concentration may be less well suited for such a prediction in the flames under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005)

    Article  ADS  Google Scholar 

  2. F. Biagioli, F. Göthe, B. Schuermans, Exp. Therm. Fluid Sci. 32, 1344 (2008)

    Article  Google Scholar 

  3. M. Bozkurt, M. Fikri, C. Schulz, Appl. Phys. B, Lasers Opt., (2012, in press)

  4. A. Brockhinke, M. Letzgus, S. Rinne, K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3028 (2006)

    Google Scholar 

  5. S. Candel, Proc. Combust. Inst. 29, 1 (2002)

    Article  Google Scholar 

  6. C. Chen, Y. Sheng, S. Yu, X. Ma, J. Chem. Phys. 101, 5727 (1994)

    Article  ADS  Google Scholar 

  7. J. Cooper, J. Whitehead, J. Chem. Soc. Faraday Trans. 88, 2323 (1992)

    Article  Google Scholar 

  8. J. Cooper, J. Whitehead, J. Phys. Chem. 98, 8274 (1994)

    Article  Google Scholar 

  9. D.R. Crosley, K.J. Rensberger, R.A. Copeland, in Selectivity in Chemical Reactions, ed. by J.C. Whitehead (Kluwer, Dordrecht, 1988), p. 543

    Google Scholar 

  10. A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1974)

    Book  Google Scholar 

  11. E. Goos, A. Burcat, B. Ruscic, New NASA thermodynamic polynomials database with active thermochemical tables updates, Report ANL 05/20 TAE 960 (2011)

  12. P. Gopalakrishnan, M.K. Bobba, J.M. Seitzman, Proc. Combust. Inst. 31, 3401 (2007)

    Article  Google Scholar 

  13. L. Haber, U. Vandsburger, Combust. Sci. Technol. 175, 2003 (1859)

    Google Scholar 

  14. J. Hall, E. Petersen, Int. J. Chem. Kinet. 38, 714 (2006)

    Article  Google Scholar 

  15. J. Hall, J. Vries, A. Amadio, E. Petersen, in Aerospace Sciences Meeting and Exhibit, vol. 43 (2005). AIAA 2005-1318

    Google Scholar 

  16. C. Hand, G. Kistiakowsky, J. Chem. Phys. 37, 1239 (1962)

    Article  ADS  Google Scholar 

  17. Y. Hardalupas, M. Orain, C.S. Panoutsos, A.M.K.P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, J. Klingmann, Appl. Therm. Eng. 24, 1619 (2004)

    Article  Google Scholar 

  18. T. Kathrotia, Ph.D. Thesis, Universität Heidelberg (2011). Available online: http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2011/12027/

  19. T. Kathrotia, U. Riedel, J. Warnatz, in 4th European Combustion Meeting. (2009). Paper 2

    Google Scholar 

  20. T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Combust. Flame 157, 1261 (2010)

    Article  Google Scholar 

  21. M. Köhler, A. Brockhinke, M. Braun-Unkhoff, K. Kohse-Höinghaus, J. Phys. Chem. A 114, 4719 (2010)

    Article  Google Scholar 

  22. K. Kohse-Höinghaus, A. Brockhinke, Combust. Explos. Shock Waves 45, 349 (2009)

    Article  Google Scholar 

  23. J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28, 1757 (2000)

    Article  Google Scholar 

  24. J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005)

    Article  Google Scholar 

  25. S. Krishnamachari, H. Broida, J. Chem. Phys. 34, 1709 (1961)

    Article  ADS  Google Scholar 

  26. J. Luque, D.R. Crosley, LIFBASE (version 2.0.6), Report MP 99-009, SRI International, Menlo Park, CA (1999)

  27. U. Maas, Appl. Math. 40, 249 (1995)

    MathSciNet  MATH  Google Scholar 

  28. U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988)

    Article  Google Scholar 

  29. A. McIlroy, Chem. Phys. Lett. 296, 151 (1998)

    Article  ADS  Google Scholar 

  30. J. Miller, C. Melius, Combust. Flame 91, 21 (1992)

    Article  Google Scholar 

  31. H. Najm, P. Paul, C. Mueller, P. Wyckoff, Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  32. P. Nau, J. Krüger, A. Lackner, M. Letzgus, A. Brockhinke, Appl. Phys. B, Lasers Opt., (2012, in press)

  33. V. Nori, J. Seitzman, Proc. Combust. Inst. 32, 895 (2009)

    Article  Google Scholar 

  34. C. Panoutsos, Y. Hardalupas, A.M.K.P. Taylor, Combust. Flame 156, 273 (2009)

    Article  Google Scholar 

  35. P.H. Paul, J.L. Durant Jr., J.A. Gray, J. Chem. Phys. 102, 8378 (1955)

    Article  ADS  Google Scholar 

  36. K. Rensberger, M. Dyer, R. Copeland, Appl. Opt. 27, 3679 (1988)

    Article  ADS  Google Scholar 

  37. G. Richmond, M.L. Costen, K.G. McKendrick, J. Phys. Chem. A 109, 542 (2005)

    Article  Google Scholar 

  38. M. Savadatti, H. Broida, J. Chem. Phys. 45, 2390 (1966)

    Article  ADS  Google Scholar 

  39. K. Schofield, M. Steinberg, J. Phys. Chem. A 111, 2098 (2007)

    Article  Google Scholar 

  40. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowmann, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-mech 3.0, University of California, Berkeley, CA. (1999)

  41. G. Smith, J. Luque, C. Park, J. Jeffries, D. Crosley, Combust. Flame 131, 59 (2002)

    Article  Google Scholar 

  42. G. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005)

    Article  Google Scholar 

  43. G. Smith, C. Park, J. Schneiderman, J. Luque, Combust. Flame 141, 66 (2005)

    Article  Google Scholar 

  44. U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223, 503 (2009)

    Article  Google Scholar 

  45. C.A. Taatjes, N. Hansen, D.L. Osborn, K. Kohse-Höinghaus, T.A. Cool, P.R. Westmoreland, Phys. Chem. Chem. Phys. 10, 20 (2008)

    Article  Google Scholar 

  46. M. Tamura, P. Berg, J. Harrington, J. Luque, J. Jeffries, G. Smith, D. Crosley, Combust. Flame 114, 502 (1998)

    Article  Google Scholar 

  47. J.W. Thoman Jr., A.J. McIlroy, Phys. Chem. A 104, 4953 (2000)

    Article  Google Scholar 

  48. T. Turanyi, Comput. Chem. 14, 253 (1990)

    Article  Google Scholar 

  49. C.M. Vagelopoulos, J.H. Frank, Proc. Combust. Inst. 30, 241 (2005)

    Article  Google Scholar 

  50. S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B, Lasers Opt. (2012 in press). doi:10.1007/s00340-012-4953-5

  51. B.A. Williams, L. Pasternack, Combust. Flame 111, 87 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Katharina Kohse-Höinghaus for support and helpful discussions. Deutsche Forschungsgemeinschaft (DFG) has funded this work under contracts RI 839/4-2, KO 1363/21-2, PAK 116/1 and 116/2 and SFB 686 TP C5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kathrotia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathrotia, T., Riedel, U., Seipel, A. et al. Experimental and numerical study of chemiluminescent species in low-pressure flames. Appl. Phys. B 107, 571–584 (2012). https://doi.org/10.1007/s00340-012-5002-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5002-0

Keywords

Navigation