Skip to main content
Log in

Ray tracing of chemiluminescence in an unconfined non-premixed turbulent jet flame using large-eddy simulation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical diagnostic techniques, such as chemiluminescence imaging, are commonly used to study turbulent flames. Inherent to turbulent flames is the spatio-temporal variation of the volumetric distribution of temperature and chemical composition. In consequence, the index of refraction varies accordingly and causes distortion of any optical ray intersecting the turbulent flame. This distortion is well known as beam steering. Beam steering may degrade imaging quality by reducing the overall spatial resolution. Its impact of course depends on the actual specifications of the imaging system itself. In this study a methodology is proposed to tackle this issue numerically and is exemplified for chemiluminescence imaging in a well-known turbulent hydrogen-fueled jet flame. Large-eddy simulation (LES) of this unconfined non-premixed flame is used to simulate instantaneous volumetric distributions of the flow and scalar fields including the local index of refraction. This simulation additionally predicts local concentrations of electronically excited chemiluminescent active species. At locations with significantly high concentrations of luminescent species, optical rays are initiated in the direction of the array detector used for recording single chemiluminescence images. Assuming the validity of geometrical optics, these rays are tracked along their pathways. Their direction of propagation changes according to the local instantaneous distribution of the index of refraction. After leaving the computational domain of the ray tracing code which is fed by the LES, each ray is processed by the commercial code ZEMAX® and imaged onto an array detector. Measured and numerically simulated ensemble-averaged chemiluminescence images are compared to each other. Overall, a satisfying agreement is observed. The primary aim of this paper is the exposition of this method where numerical and experimental results are not any more compared in the flame but where this comparison is shifted to the imaging plane. Future extensions to higher pressures in enclosed combustors or internal combustion engines where beam-steering effects are much more pronounced than in atmospheric jet flames are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Lauer, T. Sattelmayer, in VDI Flammentag, vol. 23, Berlin (2007)

    Google Scholar 

  2. M. Lauer, T. Sattelmayer, Appl. Phys. B (2012 in press)

  3. M. Bozkurt, M. Hartmann, T. Kathrotia, U. Riedel, M. Fikri, C. Schulz, in 4th Eur. Combustion Meet. (2009)

    Google Scholar 

  4. M. Röder, T. Dreier, C. Schulz, Appl. Phys. B (2012 in press). doi:10.1007/s00340-012-4990-0

  5. M.K. Chin, J.D. Smith, V. Sick, SAE Int. J. Fuels Lubr. 1, 570 (2008)

    Google Scholar 

  6. C.M. Fajardo, J.D. Smith, V. Sick, J. Phys. Conf. Ser. 45, 19 (2006)

    Article  ADS  Google Scholar 

  7. U. Fissenewert, V. Sick, H. Pucher, SAE Trans. J. Fuels Lubr. 786 (2005)

  8. J.D. Smith, V. Sick, Appl. Opt. 44, 6682 (2005)

    Article  ADS  Google Scholar 

  9. L.C. Haber, U. Vandsburger, W.R. Saunders, V.K. Khanna, Proc. IGTI 121, 1 (2000)

    Google Scholar 

  10. J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005)

    Article  Google Scholar 

  11. J. Floyd, A.M. Kempf, Proc. Combust. Inst. 33, 751 (2011)

    Article  Google Scholar 

  12. T. Chou, D.J. Patterson, Combust. Flame 101, 45 (1995)

    Article  Google Scholar 

  13. P.G. Aleiferis, T. Hardalupas, A.M.K.P. Taylor, K. Ishii, Y. Urata, Combust. Flame 136, 72 (2004)

    Article  Google Scholar 

  14. Y. Hardalupas, C.S. Panoutsos, A.M.K.P. Taylor, Exp. Fluids 49, 883 (2010)

    Article  Google Scholar 

  15. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  16. M. Orain, Y. Hardalupas, C. R., Méc. 338, 241 (2010)

    Article  Google Scholar 

  17. C.S. Panoutsos, Y. Hardalupas, A.M.K.P. Taylor, Combust. Flame 156, 273 (2009)

    Article  Google Scholar 

  18. P. Kutne, R. Sadanandan, W. Meier, in 4th Eur. Combustion Meet. (2009)

    Google Scholar 

  19. B. Ayoola, R. Balachandran, J. Frank, E. Mastorakos, C. Kaminski, Combust. Flame 144, 1 (2006)

    Article  Google Scholar 

  20. F. Güthe, B. Schuermans, Meas. Sci. Technol. 18, 1 (2007)

    Article  Google Scholar 

  21. T. Kathrotia, U. Riedel, J. Warnatz, in 4th Eur. Combustion Meet. (2009)

    Google Scholar 

  22. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (2012 in press). doi:10.1007/s00340-012-5002-0

  23. H. Forkel, J. Janicka, Flow Turbul. Combust. 65, 163 (2000)

    Article  MATH  Google Scholar 

  24. A. Kempf, F. Flemming, J. Janicka, Proc. Combust. Inst. 30, 557 (2005)

    Article  Google Scholar 

  25. F. Flemming, A. Sadiki, J. Janicka, Proc. Combust. Inst. 31, 3189 (2007)

    Article  Google Scholar 

  26. N. Peters, Proc. Combust. Inst. 21, 1231 (1986)

    ADS  Google Scholar 

  27. R.W. Bilger, S.H. Stårner, R.J. Kee, Combust. Flame 80, 135 (1990)

    Article  Google Scholar 

  28. B. Somers, The simulation of flat flames with detailed and reduced chemical models, Dissertation, Technische Universiteit Eindhoven, 1994

  29. J. Janicka, W. Kollmann, Proc. Combust. Inst. 17, 421 (1978)

    Google Scholar 

  30. M. Germano, U. Piomelli, P. Moin, W. Cabot, Phys. Fluids A 3, 1760 (1991)

    Article  ADS  MATH  Google Scholar 

  31. W.C. Gardiner Jr., Y. Hidaka, T. Tanzawa, Combust. Flame 40, 213 (1981)

    Article  Google Scholar 

  32. D. Meschede, Optik, Licht und Laser (Teubner, Stuttgart, 1999) Chap. 1

    Google Scholar 

  33. J. Puchalski, Appl. Opt. 33, 1900 (1994)

    Article  ADS  Google Scholar 

  34. F. Lekien, J. Marsden, Int. J. Numer. Methods Eng. 63, 455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. ZEMAX® Optical Design Program User’s Guide (2008)

  36. http://imaging.nikon.com/lineup/lens/singlefocal, © 2011 Nikon Corporation

  37. R. Barlow (ed.), Proc. TNF Workshops (2012). http://www.sandia.gov/TNF/abstract.html

    Google Scholar 

  38. D.G. Pfuderer, A.A. Neuber, G. Früchtel, E.P. Hassel, J. Janicka, Combust. Flame 106, 301 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the sponsorship of the Deutsche Forschungsgemeinschaft (contract no. DFG JA 544/35-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dreizler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertem, C.K., Janicka, J. & Dreizler, A. Ray tracing of chemiluminescence in an unconfined non-premixed turbulent jet flame using large-eddy simulation. Appl. Phys. B 107, 603–610 (2012). https://doi.org/10.1007/s00340-012-5000-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5000-2

Keywords

Navigation