Skip to main content
Log in

Control and active stabilization of the linewidth of an ECDL

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The linewidth of a polarization-locked external cavity diode laser (ECDL) is explored employing heterodyne as well as self-heterodyne measurements. We use a model capable of providing the individual contributions of white, pink and red noise to the overall linewidth to analyze the measured beat spectra. These spectra are obtained while tuning the external cavity as well as a function of pump current and feedback level. By virtue of our locking technique, we find that the linewidth can be adjusted and minimized by simply altering the setpoint of the closed-loop control. This control of the linewidth is applicable for any ECDL using polarization locking. For our particular ECDL, we are able to tune the overall linewidth from ≈8 kHz to 20 kHz. Moreover, we achieve a lower white noise level of the ECDL compared to a free running one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Kikuchi, T. Okoshi, M. Nagamatsu, N. Henmi, J. Lightwave Technol. 2, 1024 (1984)

    Article  ADS  Google Scholar 

  2. C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991)

    Article  ADS  Google Scholar 

  3. K.S. Repasky, A.R. Nehrir, J.T. Hawthorne, G.W. Switzer, J.L. Carlsten, Appl. Opt. 45, 9013 (2006)

    Article  ADS  Google Scholar 

  4. Th. Führer, Th. Walther, Opt. Lett. 33, 372 (2008)

    Article  ADS  Google Scholar 

  5. Th. Führer, D. Stang, Th. Walther, Opt. Express 17, 441 (2009)

    Article  Google Scholar 

  6. Th. Führer, S. Euler, Th. Walther, J. Opt. Soc. Am. B 28, 508 (2011)

    Article  Google Scholar 

  7. J. Hult, L.S. Burns, C.F. Kaminski, Appl. Opt. 44, 3675 (2005)

    Article  ADS  Google Scholar 

  8. C.J. Erickson, M. Van Zijll, G. Doermann, D.S. Durfee, Rev. Sci. Instrum. 79, 073107 (2008)

    Article  ADS  Google Scholar 

  9. Th. Führer, B. Rein, Laser Current Supply LQprO, 2011

  10. G. Genty, M. Kaivola, H. Ludvigsen, Opt. Commun. 203, 295 (2002)

    Article  ADS  Google Scholar 

  11. L.B. Mercer, J. Lightwave Technol. 9, 485 (1991)

    Article  ADS  Google Scholar 

  12. Th. Führer, Th. Walther, Phys. Rev. A (2011, submitted)

  13. R. Wyatt, Electron. Lett. 21, 658 (1985)

    Article  Google Scholar 

  14. G. Genty, A. Grohn, H. Talvitie, M. Kaivola, H. Ludvigsen, IEEE J. Quantum Electron. 36, 1193 (2000)

    Article  ADS  Google Scholar 

  15. E. Patzak, H. Olesen, A. Sugimura, S. Saito, T. Mukai, Electron. Lett. 19, 938 (1983)

    Article  ADS  Google Scholar 

  16. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

    Article  ADS  Google Scholar 

  17. M.W. Fleming, Appl. Phys. Lett. 38, 511 (1981)

    Article  ADS  Google Scholar 

  18. C. Henry, IEEE J. Quantum Electron. 18, 259 (1982)

    Article  ADS  Google Scholar 

  19. G.P. Agrawal, R. Roy, Phys. Rev. A 37, 2495 (1988)

    Article  ADS  Google Scholar 

  20. N.A. Olsson, N.K. Dutta, Appl. Phys. Lett. 44, 840 (1984)

    Article  ADS  Google Scholar 

  21. G. Acket, D. Lenstra, A. den Boef, B. Verbeek, IEEE J. Quantum Electron. 20, 1163 (1984)

    Article  ADS  Google Scholar 

  22. R. Tkach, A. Chraplyvy, J. Lightwave Technol. 4, 1655 (1986)

    Article  ADS  Google Scholar 

  23. K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995)

    Article  Google Scholar 

  24. N. Schunk, K. Petermann, IEEE J. Quantum Electron. 24, 1242 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Robert Roth for helpful discussions, Wolfgang Elsässer for lending us the real time spectrum analyzer and the Deutsche Forschungsgemeinschaft within the framework of GRK 1037 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Führer, T., Walther, T. Control and active stabilization of the linewidth of an ECDL. Appl. Phys. B 108, 249–253 (2012). https://doi.org/10.1007/s00340-012-4999-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4999-4

Keywords

Navigation