Skip to main content
Log in

Auto-ignition and flame stabilization of pulsed methane jets in a hot vitiated coflow studied with high-speed laser and imaging techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The auto-ignition of a pulsed methane jet issuing into a laminar coflow of hot exhaust products of a lean premixed hydrogen/air flat flame was examined using high-speed laser and optical measurement techniques with frame rates of 5 kHz or more. OH* chemiluminescence was used to determine the downstream location of the first auto-ignition kernel as well as the stabilization height of the steady-state lifted jet flame. OH planar laser-induced fluorescence (PLIF) was used to determine further details of the auto-ignition with a higher spatial resolution. Simultaneous imaging of broadband luminosity from a viewing angle perpendicular to the OH* chemiluminescence was applied, to three-dimensionally reconstruct the ignition kernel location in space and to determine whether the first occurrence of the kernel was within or beyond the PLIF laser sheet. The development and expansion of the jet was characterized by high-speed Schlieren imaging. Statistics have been compiled for both the ignition time as well as the downstream location of the first auto-ignition kernel and the stabilization height of the steady-state lifted jet flame. From the PLIF images it was found that auto-ignition tended to occur at the interface between bulges of the inflowing jet and the coflow. For steady-state conditions, auto-ignition kernels were observed frequently below the flame base, emphasizing that the lifted jet flame is stabilized by auto-ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Koch, C. Naumann, W. Meier, M. Aigner, in Proc. ASME Turbo Expo, 2005, Paper No. GT2005-68405

    Google Scholar 

  2. F. Güthe, J. Hellat, P. Flohr, J. Eng. Gas Turbines Power 131, 021503 (2009)

    Article  Google Scholar 

  3. J.M. Fleck, P. Griebel, A.M. Steinberg, M. Stöhr, M. Aigner, A. Ciani, in Proc. ASME Turbo Expo, 2010, Paper No. GT2010-22722

    Google Scholar 

  4. J. Fleck, P. Griebel, A.M. Steinberg, M. Stöhr, M. Aigner, J. Eng. Gas Turbines Power 134, 041502 (2012)

    Article  Google Scholar 

  5. I. Boxx, M. Stöhr, C. Carter, W. Meier, Combust. Flame 157, 1510 (2010)

    Article  Google Scholar 

  6. J. de Vries, E. Petersen, Proc. Combust. Inst. 31, 3163 (2007)

    Article  Google Scholar 

  7. T. Lieuwen, V. McDonell, D. Santavicca, T. Sattelmayer, Combust. Sci. Technol. 180, 1169 (2008)

    Article  Google Scholar 

  8. E. Mastorakos, Prog. Energy Combust. Sci. 35, 57 (2009)

    Article  Google Scholar 

  9. L. Spadaccinia, M. Colket III, Prog. Energy Combust. Sci. 20, 431 (1994)

    Article  Google Scholar 

  10. G. Cho, D. Jeong, G. Moon, C. Bae, Energy 35, 4184 (2010)

    Article  Google Scholar 

  11. C. Markides, E. Mastorakos, Proc. Combust. Inst. 30, 883 (2005)

    Article  Google Scholar 

  12. C.N. Markides, E. Mastorakos, Flow Turbul. Combust. 86, 585 (2011)

    Article  MATH  Google Scholar 

  13. S.S. Patwardhan, K.N. Lakshmisha, Int. J. Hydrog. Energy 33, 7265 (2008)

    Article  Google Scholar 

  14. K.G. Gupta, T. Echekki, Combust. Flame 158, 327 (2011)

    Article  Google Scholar 

  15. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Flame 155, 181 (2008)

    Article  Google Scholar 

  16. T. Mosbach, R. Sadanandan, W. Meier, R. Eggels, in Proc. ASME Turbo Expo, 2010, Paper No. GT2010-22625

    Google Scholar 

  17. C. Fajardo, V. Sick, Exp. Fluids 46, 43 (2009)

    Article  Google Scholar 

  18. C. Heeger, B. Böhm, S. Ahmed, R. Gordon, I. Boxx, W. Meier, A. Dreizler, E. Mastorakos, Proc. Combust. Inst. 32, 2957 (2009)

    Article  Google Scholar 

  19. R. Sadanandan, D. Markus, R. Schießl, U. Maas, J. Olofsson, H. Seyfried, M. Richter, M. Aldén, Proc. Combust. Inst. 31, 719 (2007)

    Article  Google Scholar 

  20. W. Meier, I. Boxx, C. Arndt, M. Gamba, N. Clemens, J. Eng. Gas Turbines Power 133, 021504 (2011)

    Article  Google Scholar 

  21. E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combust. Flame 159, 697 (2012)

    Article  Google Scholar 

  22. G. Bruneaux, Oil Gas Sci. Technol. 63, 461 (2008)

    Article  Google Scholar 

  23. G. Fast, D. Kuhn, A. Class, U. Maas, Combust. Flame 156, 200 (2009)

    Article  Google Scholar 

  24. R. Cabra, T. Myhrvold, J. Chen, R. Dibble, A. Karpetis, R. Barlow, Proc. Combust. Inst. 29, 1881 (2002)

    Article  Google Scholar 

  25. R. Cabra, J.Y. Chen, R. Dibble, A. Karpetis, R. Barlow, Combust. Flame 143, 491 (2005)

    Article  Google Scholar 

  26. B. Dally, A. Kerpetis, R. Barlow, Proc. Combust. Inst. 29, 1147 (2003)

    Article  Google Scholar 

  27. Z. Wu, A.R. Masri, R.W. Bilger, Flow Turbul. Combust. 76, 61 (2006)

    Article  Google Scholar 

  28. P.R. Medwell, P.A. Kalt, B.B. Dally, Combust. Flame 148, 48 (2007)

    Article  Google Scholar 

  29. B. Choi, K. Kim, S. Chung, Combust. Flame 156, 396 (2009)

    Article  Google Scholar 

  30. B. Choi, S. Chung, Combust. Flame 157, 2348 (2010)

    Article  Google Scholar 

  31. E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combust. Flame 157, 1167 (2010)

    Article  Google Scholar 

  32. E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combust. Flame 158, 1553 (2011)

    Article  Google Scholar 

  33. S.H. Kim, K.Y. Huha, B. Dally, Proc. Combust. Inst. 30, 751 (2005)

    Article  Google Scholar 

  34. F. Christo, B. Dally, Combust. Flame 142, 117 (2005)

    Article  Google Scholar 

  35. R.R. Cao, S.B. Pope, A.R. Masri, Combust. Flame 142, 438 (2005)

    Article  Google Scholar 

  36. R. Gordon, A. Masri, S. Pope, G. Goldin, Combust. Theory Model. 11, 351 (2007)

    Article  MATH  Google Scholar 

  37. P. Domingo, L. Vervisch, D. Veynante, Combust. Flame 152, 415 (2008)

    Article  Google Scholar 

  38. S.S. Patwardhan, S. De, K.N. Lakshmisha, B.N. Raghunandan, Proc. Combust. Inst. 32, 1705 (2009)

    Article  Google Scholar 

  39. C.S. Yoo, R. Sankaran, J.H. Chen, J. Fluid Mech. 640, 453 (2009)

    Article  ADS  MATH  Google Scholar 

  40. M. Ihme, Y.C. See, Combust. Flame 157, 1850 (2010)

    Article  Google Scholar 

  41. C. Morley, Gaseq—a chemical equilibrium program for Windows

  42. Manufacturer information

  43. S. Prucker, W. Meier, W. Stricker, Rev. Sci. Instrum. 65, 2908 (1994)

    Article  ADS  Google Scholar 

  44. R. Sadanandan, M. Stöhr, W. Meier, Appl. Phys. B 90, 609 (2008)

    Article  ADS  Google Scholar 

  45. E. Mastorakos, T.A. Baritaud, Combust. Flame 109, 198 (1997)

    Article  Google Scholar 

  46. R. Hilbert, D. Thévenin, Combust. Flame 128, 22 (2002)

    Article  Google Scholar 

  47. G.P. Smith, J. Luque, C. Park, J.B. Jeffries, D.R. Crosley, Combust. Flame 131, 59 (2002)

    Article  Google Scholar 

  48. J.M. Hall, M.J.A. Rickard, E.L. Petersen, Combust. Sci. Technol. 177, 455 (2005)

    Article  Google Scholar 

  49. W. Meier, C. Arndt, J. Gounder, I. Boxx, K. Marr, in Proc. 23rd ICDERS (2011), paper no. 90

    Google Scholar 

  50. Y.M. Wright, O.-N. Margari, K. Boulouchos, G. De Paola, E. Mastorakos, Flow Turbul. Combust. 84, 49 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Lukas Bandle for preparing technical diagrams for this publication, Jens Kreeb for the expert technical support and Isaac Boxx and Adam Steinberg for their help in setting up the experiment. The financial support within the DLR project IVTAS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Arndt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, C.M., Gounder, J.D., Meier, W. et al. Auto-ignition and flame stabilization of pulsed methane jets in a hot vitiated coflow studied with high-speed laser and imaging techniques. Appl. Phys. B 108, 407–417 (2012). https://doi.org/10.1007/s00340-012-4945-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4945-5

Keywords

Navigation