Skip to main content
Log in

Defect mode of one-dimensional holographic photonic crystals modulated by the intensity ratio of two constructive beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effect of air impurity layer on the reflection spectrum of one-dimensional holographic photonic crystals was investigated in two forms. One form is the band-edge oscillation phenomenon when the air impurity layer is near the surface of the structure; the other form is the defect mode appearing in the band gap when the air impurity layer is near the center of the structure. For the defect mode, its central wavelength will nonlinearly change with some repeatability with the defect size, not as the result of the step-index photonic crystal. Moreover, the depth of the defect mode in the band gap can be modulated by the intensity ratio of the two construction beams. And the reflectance at the central wavelength of the defect mode can be almost zero with appropriate optical intensity ratio. The corresponding experimental results were also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. Hu, A. Imamoglu, Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  4. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

  5. P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, Appl. Phys. Lett. 95, 031102 (2009)

    Article  ADS  Google Scholar 

  6. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999)

    Article  Google Scholar 

  7. M. Notomi, E. Kuramochi, T. Tanabe, Nat. Photonics 2, 741 (2008)

    Article  ADS  Google Scholar 

  8. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi et al., Opt. Express 13, 2678 (2005)

    Article  ADS  Google Scholar 

  9. F. Benabid, F. Couny, J.C. Knight, T.A. Birks, P.St.J. Russell, Nature 434, 488 (2005)

    Article  ADS  Google Scholar 

  10. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Nature 424, 511 (2003)

    Article  ADS  Google Scholar 

  11. C. Chang, T. Yan, H. Liu, Appl. Opt. 44, 2580 (2005)

    Article  ADS  Google Scholar 

  12. N. Lai, W. Liang, J. Lin, C. Hsu, Opt. Express 13, 5331 (2005)

    Article  ADS  Google Scholar 

  13. T. Zhai, Z. Ren, R. Zhao, Z. Wang, L. Wang, J. Zhou, D. Liu, Chin. Phys. Lett. 26, 054201 (2009)

    Article  ADS  Google Scholar 

  14. L. Vogelaar, W. Nijdam, H.A.G.M. van Wolferen, R.M. de Ridder, F.B. Segerink, E. Flück, L. Kuipers, N.F. van Hulst, Adv. Mater. 13, 1551 (2001)

    Article  Google Scholar 

  15. W. Lee, S.A. Pruzinsky, P.V. Braun, Adv. Mater. 14, 271 (2002)

    Article  MATH  Google Scholar 

  16. M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, H.I. Smith, Nature 429, 538 (2004)

    Article  ADS  Google Scholar 

  17. C. Moormann, J. Bolten, H. Kurz, Microelectron. Eng. 73, 417 (2004)

    Article  Google Scholar 

  18. R. Ma, J. Xu, W.Y. Tam, Appl. Phys. Lett. 89, 081116 (2006)

    Article  ADS  Google Scholar 

  19. Z. Wang, T. Zhai, R. Zhao, D. Liu, J. Opt. A, Pure Appl. Opt. 10, 085205 (2008)

    Article  ADS  Google Scholar 

  20. Z. Ren, Z. Wang, T. Zhai et al., Phys. Rev. B 76, 035120 (2007)

    Article  ADS  Google Scholar 

  21. T. Zhai, Z. Wang, R. Zhao et al., Appl. Phys. Lett. 93, 201902 (2008)

    Article  ADS  Google Scholar 

  22. Z. Ren, T. Zhai, Z. Wang et al., Adv. Mater. 20, 2337 (2008)

    Article  Google Scholar 

  23. Z. Wang, J. Zhou, D. Liu, Opt. Lett. 31, 3270 (2006)

    Article  ADS  Google Scholar 

  24. D. Liu, J. Zhou, Opt. Commun. 107, 471 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Liu, W. Tang, W. Huang, Z. Liang, Opt. Eng. 31, 809 (1992)

    Article  ADS  Google Scholar 

  26. Z. Wang, S. Chen, J. Zhou, D. Liu, Appl. Opt. 50, 2049 (2011)

    Article  ADS  Google Scholar 

  27. M. Born, E. Wolf, Principle of Optics, 6th edn. (Pergamon, Oxford, 1980)

    Google Scholar 

  28. L. Cui, H. Gao, P. Dong, D. Liu, Optik 116, 118 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) Education Ministry of China and the Fundamental Research Funds for the central universities (Grant No. 2009SAT-5) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Liu, D. & Dai, R. Defect mode of one-dimensional holographic photonic crystals modulated by the intensity ratio of two constructive beams. Appl. Phys. B 107, 361–367 (2012). https://doi.org/10.1007/s00340-012-4937-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4937-5

Keywords

Navigation