Skip to main content
Log in

Optically pumped distributed feedback thin film waveguide lasers with multiwavelength and polarized emissions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Zirconia titania organically modified silicate (ZrO2-TiO2-ORMOSIL) thin film waveguides of thickness from 0.4 to 7.0 μm were synthesized using low temperature sol–gel method. Narrow linewidth distributed feedback (DFB) lasing was demonstrated in rhodamine 6G-doped ZrO2-TiO2-ORMOSIL waveguides. Simultaneous tuning of multiple-output wavelengths was achieved in the dye-doped waveguides by varying the period of the gain modulation generated by a nanosecond Nd:YAG laser at 532 nm. As many as eight separate output wavelengths were observed for a planar ZrO2-TiO2-ORMOSIL waveguide of thickness 7.0-μm. The output polarizations of the DFB waveguide lasers can be tuned by varying the polarization of the crossing pump beams. TE and TM optical waves belonging to the same propagation mode were generated by crossing two polarized pump beams, resulting in an effective double of the number of output wavelengths. Continuous tuning of the polarized laser outputs was also achieved by varying the crossing angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Park, J.W. Dawson, K.J. Vahala, IEEE Photonics Technol. Lett. 4, 540 (1992)

    Article  ADS  Google Scholar 

  2. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, IEEE Photonics Technol. Lett. 8, 60 (1996)

    Article  ADS  Google Scholar 

  3. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Phys. Rev. Lett. 82, 2278 (1999)

    Article  ADS  Google Scholar 

  4. A. Tulek, Z.V. Vardeny, J. Opt. 12, 024008 (2010)

    Article  ADS  Google Scholar 

  5. C.S. Wang, Y.L. Chen, H.Y. Lin, Y.T. Chen, Y.F. Chen, Appl. Phys. Lett. 97, 191104 (2010)

    Article  ADS  Google Scholar 

  6. Y. Tian, X. Ma, P. Chen, Y. Zhang, D. Yang, Opt. Express 18, 10668 (2010)

    Article  ADS  Google Scholar 

  7. A.E. Vasdekis, G.E. Town, G.A. Turnbull, I.D.W. Samuel, Opt. Express 15, 3962 (2007)

    Article  ADS  Google Scholar 

  8. M. Sudzius, M. Langner, S.I. Hintschich, V.G. Lyssenko, H. Frob, K. Leo, Appl. Phys. Lett. 94, 061102 (2009)

    Article  ADS  Google Scholar 

  9. K.-J. Che, Y.-D. Yang, Y.-Z. Huang, Appl. Phys. Lett. 96, 051104 (2010)

    Article  ADS  Google Scholar 

  10. Y. Huang, S.-T. Wu, Opt. Express 18, 27697 (2010)

    Article  ADS  Google Scholar 

  11. M. Kuwata-Gonokami, R.H. Jordan, A. Dodabalapur, H.E. Katz, M.L. Schilling, R.E. Slusher, S. Ozawa, Opt. Lett. 20, 2093 (1995)

    Article  ADS  Google Scholar 

  12. S.V. Frolov, M. Shkunov, Z.V. Vardeny, K. Yoshino, Phys. Rev. B 56, R4363 (1997)

    Article  ADS  Google Scholar 

  13. J. Wang, K.Y. Wong, Appl. Phys. B, Lasers Opt. 87, 685 (2007)

    Article  ADS  Google Scholar 

  14. Y. Oki, S. Miyamoto, M. Maeda, N.J. Vasa, Opt. Lett. 27, 1220 (2002)

    Article  ADS  Google Scholar 

  15. A.N. Rubinov, T.S. Efendiev, A.V. Adamushko, J. Bor, Opt. Commun. 20, 159 (1977)

    Article  ADS  Google Scholar 

  16. D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden, Appl. Phys. Lett. 74, 789 (1999)

    Article  ADS  Google Scholar 

  17. J. Wang, G.X. Zhang, L. Shi, D. Lo, X.L. Zhu, Opt. Lett. 28, 90 (2003)

    Article  ADS  Google Scholar 

  18. C. Ye, L. Shi, J. Wang, D. Lo, X.L. Zhu, Appl. Phys. Lett. 83, 4101 (2003)

    Article  ADS  Google Scholar 

  19. F. Sobel, D. Gindre, J.M. Nunzi, C. Denis, V. Dumarcher, C. Fiorini-Debuisschert, K.P. Kretsch, L. Rocha, Opt. Mater. 27, 199 (2004)

    Article  ADS  Google Scholar 

  20. X.L. Zhu, L. Shi, J.L. Chan, J. Wang, C. Ye, D.N. Lo, Opt. Commun. 251, 322 (2005)

    Article  ADS  Google Scholar 

  21. H. Kogelnik, C.V. Shank, Appl. Phys. Lett. 18, 152 (1971)

    Article  ADS  Google Scholar 

  22. H. Kogelnik, C.V. Shank, J. Appl. Phys. 43, 2327 (1972)

    Article  ADS  Google Scholar 

  23. C.V. Shank, Appl. Phys. Lett. 18, 395 (1971)

    Article  ADS  Google Scholar 

  24. J. Wang, Experimental and theoretical studies of distributed feedback waveguide lasers, Ph.D. thesis, The Chinese University of Hong Kong, Hong Kong, 2006

  25. C. Ye, J. Wang, L. Shi, D. Lo, Appl. Phys. B, Lasers Opt. 78, 189 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.W. thanks the financial supports from the 100-Talent Program of Chinese Academy of Sciences, the starting grant of Shanghai Institute of Optics and Fine Mechanics (1108221-JR0), the National Natural Science Foundation of China (NSFC, Grant No. 61178007), and Science and Technology Commission of Shanghai Municipality (STCSM Nano Project, Grant No. 11nm0502400). L.Z. thanks the financial supports from NSFC (Grant No. 50802103 and 51072207) and STCSM Excellent Academic Leader of Shanghai (Grant No. 10XD1404600). R.H.L. thanks the Shanghai Natural Science Foundation (Grant No. 11ZR1441500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Wang or L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Chen, F., Li, R. et al. Optically pumped distributed feedback thin film waveguide lasers with multiwavelength and polarized emissions. Appl. Phys. B 107, 163–169 (2012). https://doi.org/10.1007/s00340-012-4907-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4907-y

Keywords

Navigation