Skip to main content
Log in

Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375C. Possible loss mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005)

    Article  ADS  Google Scholar 

  2. J. Olivares, A. Gracia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, M. Carrascosa, Nucl. Instrum. Methods Phys. Res. B 257, 765 (2007)

    Article  ADS  Google Scholar 

  3. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, M. Carrascosa, J. Appl. Phys. 101, 033512 (2007)

    Article  ADS  Google Scholar 

  4. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  5. F. Cheng, X.-L. Wang, K.-M. Wang, Opt. Mater. 29, 1523 (2007)

    Article  ADS  Google Scholar 

  6. F. Cheng, J. Appl. Phys. 106, 081101 (2009)

    Article  ADS  Google Scholar 

  7. J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, J. Olivares, Appl. Phys. B 95, 429 (2009)

    Article  ADS  Google Scholar 

  8. A. Majkic, M. Koechlin, G. Poberaj, P. Günter, Opt. Express 16, 8769 (2008)

    Article  ADS  Google Scholar 

  9. http://www.cmam.uam.es

  10. A. García-Cabañes, E. Diéguez, J.M. Cabrera, F. Agulló-López, J. Phys., Condens. Matter 1, 6453 (1989)

    Article  ADS  Google Scholar 

  11. Y. Okamura, S. Yoshinaka, S. Yamamoto, Appl. Opt. 22, 3892 (1983)

    Article  ADS  Google Scholar 

  12. G. Gotz, H. Karge, Nucl. Instrum. Methods Phys. Res. B 209/210, 1079 (1983)

    Article  Google Scholar 

  13. A. Boudrioua, J.C. Loulergue, F. Laurell, P. Moretti, J. Opt. Soc. Am. 18, 1832 (2001)

    Article  ADS  Google Scholar 

  14. G.G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 92, 6477 (2002)

    Article  ADS  Google Scholar 

  15. G.G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 96, 242 (2004)

    Article  ADS  Google Scholar 

  16. K. Peithmann, M.R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Appl. Phys. B 82, 419 (2006)

    Article  ADS  Google Scholar 

  17. K. Peithmann, P.D. Eversheim, J. Goetze, M. Haaks, H. Hattermann, S. Haubrich, F. Hinterberger, L. Jentjens, W. Mader, N.L. Raeth, H. Schmid, M.R. Zamani-Meymian, K. Maier, Appl. Phys. B 105, 113 (2011)

    Article  ADS  Google Scholar 

  18. A. Rivera, M.L. Crespillo, J. Olivares, G. García, F. Agulló-López, Nucl. Instrum. Methods Phys. Res. B 268, 2249 (2010)

    Article  ADS  Google Scholar 

  19. J. Ramiro-Díaz, A. Alcazar de Velasco, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 380, 71 (2009)

    Google Scholar 

  20. J. Villarroel, J. Carnicero, F. Luedtke, M. Carrascosa, A. García-Cabañes, J.M. Cabrera, A. Alcazar, B. Ramiro, Opt. Express 18, 20852 (2010)

    Article  Google Scholar 

  21. M.L. Crespillo, O. Caballero-Calero, V. Joco, A. Ribera, P. Herrero, J. Olivares, F. Agulló-López, Appl. Phys. A 104, 1143 (2011)

    Article  ADS  Google Scholar 

  22. B. Vincent, A. Boudrioua, R. Kremer, P. Moretti, Opt. Commun. 247, 461 (2005)

    Article  ADS  Google Scholar 

  23. B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y.C. Zhang, C.C. Hsu, L.H. Peng, Appl. Phys. B 89, 235 (2007)

    Article  ADS  Google Scholar 

  24. A. Dazzi, P. Mathey, P. Lompré, P. Jullien, Opt. Commun. 149, 135 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Ciencia e Innovación (MICINN) under grant MAT2008-06794-C03. M. Jubera acknowledges his FPI fellowship from MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jubera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubera, M., Villarroel, J., García-Cabañes, A. et al. Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation. Appl. Phys. B 107, 157–162 (2012). https://doi.org/10.1007/s00340-012-4897-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4897-9

Keywords

Navigation