Skip to main content
Log in

Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Raman frequency conversion of high average power pulsed Nd:YAG laser radiation into the near IR spectral region in a barium nitrate Raman laser was studied with the emphasis on thermal effects inside the Raman-active medium. The probe-beam technique together with numerical reconstruction, done by integrating the transient heat conduction and paraxial wave equations, revealed dynamics of the induced distortions featuring high-order optical aberrations. By utilizing the Zernike expansion of the reconstructed phase profile and implementing a special focusing geometry of the pump beam, partial compensation of the distortions was realized in a stable configuration of the Raman cavity. Generation of the first-, second-, and third-order Stokes radiation with output power of 17, 9.5, and 5.5 W corresponding to a quantum conversion efficiency of 32, 21, and 13% is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.S. Grabtchikov, R.V. Chulkov, V.A. Orlovich, M. Schmitt, R. Maksimenko, W. Kiefer, Opt. Lett. 28, 926 (2003)

    Article  ADS  Google Scholar 

  2. P.G. Zverev, J.T. Murray, R.C. Powell, R.J. Reeves, T.T. Basiev, Opt. Commun. 97, 59 (1993)

    Article  ADS  Google Scholar 

  3. J. Findeisen, H.J. Eichler, A.A. Kaminskii, IEEE J. Quantum Electron. 35, 173 (1999)

    Article  ADS  Google Scholar 

  4. S.N. Karpukhin, A.I. Stepanov, Quantum Electron. 16, 1027 (1986)

    Article  ADS  Google Scholar 

  5. A.S. Eremenko, S.N. Karpukhin, A.I. Stepanov, Quantum Electron. 10, 113 (1980)

    Article  ADS  Google Scholar 

  6. P.G. Zverev, T.T. Basiev, A.M. Prokhorov, Opt. Mater. 11, 335 (1999)

    Article  Google Scholar 

  7. V.A. Lisinetskii, H.J. Eichler, H. Rhee, X. Wang, V.A. Orlovich, Opt. Commun. 281, 2227 (2008)

    Article  ADS  Google Scholar 

  8. J.T. Murray, R.C. Powell, N. Peyghambarian, D. Smith, W. Austin, R.A. Stolzenberger, Opt. Lett. 20, 1017 (1995)

    Article  ADS  Google Scholar 

  9. N. Takei, S. Suzuki, F. Kannari, Appl. Phys. B 74, 521 (2002)

    Article  ADS  Google Scholar 

  10. V.A. Lisinetskii, P.V. Shpak, A.S. Grabchikov, P.A. Apanasevich, V.A. Orlovich, in Proceedings of VII International Scientific Conference “Laser Physics and Optical Technology”, 17–19 July 2008, Minsk, Belarus, vol. 3 (2008), pp. 29–32

    Google Scholar 

  11. A.S. Grabtchikov, V.A. Lisinetskii, V.A. Orlovich, M. Schmitt, R. Maksimenka, W. Kiefer, Opt. Lett. 29, 2524 (2004)

    Article  ADS  Google Scholar 

  12. P.G. Zverev, T.T. Basiev, V.V. Osiko, A.M. Kulkov, V.N. Voitsekhovskii, V.E. Yakobson, Opt. Mater. 11, 315 (1999)

    Article  Google Scholar 

  13. V. Lisinetskii, T. Riesbeck, H. Rhee, H. Eichler, V. Orlovich, Appl. Phys. B, Lasers Opt. 99, 127 (2010)

    Article  ADS  Google Scholar 

  14. H.M. Pask, Prog. Quantum Electron. 27, 3 (2003)

    Article  ADS  Google Scholar 

  15. W. Koechner, in Solid-State Laser Engineering, ed. by A. Adibi, et al. Optical Sciences (Springer, Berlin 2006), 748 pp.

    Google Scholar 

  16. A.V. Mezenov, L.N. Soms, A.I. Stepanov, Thermooptics of Solid-State Lasers, vol. 1 (Mashinostroenie, Leningrad, 1986), p. 199 (in Russian)

    Google Scholar 

  17. M.E. Innocenzi, H.T. Yura, C.L. Fincher, R.A. Fields, Appl. Phys. Lett. 56, 1831 (1990):

    Article  ADS  Google Scholar 

  18. U. Farrukh, A. Buoncristiani, C. Byvik, IEEE J. Quantum Electron. 24, 2253 (1988)

    Article  ADS  Google Scholar 

  19. U. Farrukh, P. Brockman, Appl. Opt. 32, 2075 (1993)

    Article  ADS  Google Scholar 

  20. H. Nadgaran, P. Elahi, Pramana 66, 513 (2006)

    Article  ADS  Google Scholar 

  21. H. Nadgaran, M. Sabaian, Pramana 67, 1119 (2006)

    Article  ADS  Google Scholar 

  22. V.A. Lisinetskii, I.I. Mishkel, R.V. Chulkov, A.S. Grabtchikov, P.A. Apanasevich, H.J. Eichler, V.A. Orlovich, J. Nonlinear Opt. Phys. Mater. 14, 107 (2005)

    Article  ADS  Google Scholar 

  23. V.A. Lisinetskii, D.N. Bus’ko, R.V. Chulkov, A.S. Grabchikov, P.A. Apanasevich, V.A. Orlovich, J. Appl. Spectrosc. 75, 300 (2008)

    Article  ADS  Google Scholar 

  24. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, Rochester, 2003), 578 pp.

    Google Scholar 

  25. I. Litvin, N. Khilo, A. Forbes, V. Belyi, Opt. Express 18, 4701 (2010)

    Article  ADS  Google Scholar 

  26. A. Hakola, S. Buchter, T. Kajava, H. Elfstrom, J. Simonen, P. Paakkonen, J. Turunen, Opt. Commun. 238, 335 (2004)

    Article  ADS  Google Scholar 

  27. C.E. Campbell, J. Opt. Soc. Am. A 20, 209 (2003)

    Article  ADS  Google Scholar 

  28. J.P.M. Feve, K.E. Shortoff, M.J. Bohn, J.K. Brasseur, Opt. Express 19, 913 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by financial support from the Deutsche Forschungsgemeinschaft (Project EI 110/29-1) and by the International Science and Technology Center (Project B-1679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Orlovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chulkov, R., Lisinetskii, V., Lux, O. et al. Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser. Appl. Phys. B 106, 867–875 (2012). https://doi.org/10.1007/s00340-012-4873-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4873-4

Keywords

Navigation