Skip to main content

Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall

Abstract

We have performed systematic measurements of the dynamics of laser-cooled 40Ca+ ions confined in a Penning trap and driven by a rotating dipole field (‘rotating wall’). The trap used is a copy of the one used in the SPECTRAP experiment located at the HITRAP facility at GSI, Germany. The size and shape of the ion cloud has been monitored using a CCD camera to image the fluorescence light resulting from excitation by the cooling laser. We have varied the experimental conditions such as amplitude and frequency of the rotating wall drive as well as the trapping parameters. The rotating wall can be used for a radial compression of the ion cloud thus increasing the ion density in the trap. We have also observed plasma mode excitations in agreement with theoretical expectations. This work will allow us to define the optimum parameters for high compression of the ions as needed for precision spectroscopy of forbidden transitions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. W.M. Itano, J.J. Bollinger, J.N. Tan, B. Jelenkovic, X.-P. Huang, D.J. Wineland, Science 279, 686 (1998)

    ADS  Article  Google Scholar 

  2. M. Vogel, D.F.A. Winters, D.M. Segal, R.C. Thompson, Rev. Sci. Instrum. 76, 103102 (2005)

    ADS  Article  Google Scholar 

  3. J. Kluge, T. Beier, K. Blaum, L. Dahl, S. Eliseev, F. Herfurth, B. Hofmann, O. Kester, S. Koszudowski, C. Kozhuharov, G. Maero, W. Nörtershäuser, J. Pfister, W. Quint, U. Ratzinger, A. Schempp, R. Schuch, T. Stöhlker, R.C. Thompson, M. Vogel, G. Vorobjev, D.F.A. Winters, G. Werth, Adv. Quantum Chem. 53, 83 (2007)

    ADS  Article  Google Scholar 

  4. G. Gabrielse, L. Haarsma, S.L. Rolston, Int. J. Mass Spectrom. Ion Process. 88, 319 (1989)

    Article  Google Scholar 

  5. R.C. Thompson, S. Donnellan, D.R. Crick, D.M. Segal, J. Phys. B 42, 154003 (2009)

    ADS  Google Scholar 

  6. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2004)

    Google Scholar 

  7. L. Guo-Zhong, S. Guan, A.G. Marshall, J. Am. Soc. Mass Spectrom. 9, 473 (1998)

    Article  Google Scholar 

  8. C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988)

    ADS  Article  Google Scholar 

  9. L.R. Brewer, J.D. Prestage, J.J. Bollinger, W.M. Itano, D.J. Larson, D.J. Wineland, Phys. Rev. A 38, 859 (1988)

    ADS  Article  Google Scholar 

  10. S.A. Prasad, T.M. ONeil, Phys. Fluids 22, 278 (1979)

    ADS  Article  Google Scholar 

  11. D.J. Wineland, J.J. Bollinger, W.M. Itano, J.D. Prestage, J. Opt. Soc. Am. 2, 1721 (1985)

    ADS  Google Scholar 

  12. J.J. Bollinger, D.J. Heinzen, F.L. Moore, W.M. Itano, D.J. Wineland, D.H.E. Dubin, Phys. Rev. A 48, 525 (1993)

    ADS  Article  Google Scholar 

  13. H.F. Powell, S.R. de Echaniz, E.S. Phillips, D.M. Segal, R.C. Thompson, J. Phys. B 36, 1 (2003)

    Google Scholar 

  14. R.J. Hendricks, E.S. Phillips, D.M. Segal, R.C. Thompson, J. Phys. B 41, 035301 (2008)

    ADS  Google Scholar 

  15. J.J. Bollinger, J.N. Tan, W.M. Itano, D.J. Wineland, Phys. Scr. T 59, 352 (1995)

    ADS  Article  Google Scholar 

  16. L. Gruber, J.P. Holder, J. Steiger, B.R. Beck, H.E. DeWitt, J. Glassman, J.W. McDonald, D.A. Church, D. Schneider, Phys. Rev. Lett. 86, 636 (2001)

    ADS  Article  Google Scholar 

  17. D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)

    ADS  Article  Google Scholar 

  18. T.M. O’Neil, D.H.E. Dubin, Phys. Plasmas 5, 2163 (1998)

    ADS  Article  Google Scholar 

  19. X.P. Huang, F. Anderegg, E.M. Hollmann, C.F. Driscoll, T.M. O’Neil, Phys. Rev. Lett. 78, 875 (1997)

    ADS  Article  Google Scholar 

  20. X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, Phys. Rev. Lett. 80, 73 (1998)

    ADS  Article  Google Scholar 

  21. X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, D.H.E. Dubin, Phys. Plasmas 5, 1656 (1998)

    ADS  Article  Google Scholar 

  22. F. Anderegg, E.M. Hollmann, C.F. Driscoll, Phys. Rev. Lett. 81, 4875 (1998)

    ADS  Article  Google Scholar 

  23. E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000)

    ADS  Article  Google Scholar 

  24. D.J. Heinzen, J.J. Bollinger, F.L. Moore, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 66, 2080 (1991)

    ADS  Article  Google Scholar 

  25. M.D. Tinkle, R.G. Greaves, C.M. Surko, Phys. Plasmas 3, 749 (1996)

    ADS  Article  Google Scholar 

  26. D.H.E. Dubin, J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)

    ADS  Google Scholar 

  27. D.H.E. Dubin, Phys. Rev. Lett. 66, 2076 (1991)

    ADS  Article  Google Scholar 

  28. J. Yu, M. Desaintfuscien, F. Plumelle, Appl. Phys. B 48, 51 (1989)

    ADS  Article  Google Scholar 

  29. W.M. Itano, D.J. Wineland, Phys. Rev. A 25, 35 (1982)

    ADS  Article  Google Scholar 

  30. Y. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team (2010). http://physics.nist.gov/asd

  31. D.R. Crick, S. Donnellan, R.C. Thompson, D.M. Segal, Phys. Rev. A 81, 052503 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Bundesministerium für Bildung und Forschung (BMBF) (contract: 06DA9020I), by the Deutsche Forschungsgemeinschaft (DFG) (contract: BI647/4-1) and the EPSRC under Grant number EP/D068509/1. We also acknowledge partial support of this work from the European Commission STREP PICC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Segal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bharadia, S., Vogel, M., Segal, D.M. et al. Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105–1115 (2012). https://doi.org/10.1007/s00340-012-4871-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4871-6

Keywords

  • Amplify Spontaneous Emission
  • Trapping Potential
  • Laser Cool
  • Magnetic Field Axis
  • Drive Frequency