Skip to main content
Log in

Observation of unconventional optical diffraction in α-Fe2O3/Si two-dimensional photonic crystal slab fabricated by sol-gel method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The α-Fe2O3/Si two-dimensional (2D) photonic crystal (PC) with hexagonal honeycomb structure was fabricated by self-assembly and solution-dipping method based on colloidal monolayer template with 780 and 470 nm diameter polystyrene (PS) spheres. Optical diffraction measurement was carried out under wavelengths of 800, 532 and 400 nm. An interesting dispersion phenomenon with a hexagonal diffraction pattern composed of six elliptical spots is observed under specific wavelengths. Both theoretical and experimental calculations reveal that the diffraction can only occur when the incident wavelength is smaller than \(\sqrt{3}/2\) of lattice constant, and both the shape and distribution of these spots can be modified by the PC lattice constant and the incident wavelength. All these results reveal that optical properties of these 2D PC slabs are different from conventional diffractive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T.P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000)

    Article  ADS  Google Scholar 

  3. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999)

    Article  Google Scholar 

  4. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J.F. Young, S.R. Johnson, J. MacKenzie, T. Tiedje, Appl. Phys. Lett. 70, 1438 (1997)

    Article  ADS  Google Scholar 

  5. J. Obrien, O. Painter, R. Lee, C.C. Cheng, A. Yariv, A. Scherer, Electron. Lett. 32, 2243 (1996)

    Article  Google Scholar 

  6. D.L. Bullock, C.C. Shih, R.S. Margulies, J. Opt. Soc. Am. B, Opt. Phys. 10, 399 (1993)

    Article  ADS  Google Scholar 

  7. S.Y. Lin, V.M. Hietala, L. Wang, E.D. Jones, Opt. Lett. 21, 1771 (1996)

    Article  ADS  Google Scholar 

  8. A. Di Falco, C. Conti, G. Assanto, J. Lightwave Technol. 22, 1748 (2004)

    Article  ADS  Google Scholar 

  9. M. Notomi, Phys. Rev. B 62, 10696 (2000)

    Article  ADS  Google Scholar 

  10. C.Y. Luo, S.G. Johnson, J.D. Joannopoulos, Appl. Phys. Lett. 81, 2352 (2002)

    Article  ADS  Google Scholar 

  11. Z.Y. Li, L.L. Lin, Phys. Rev. B 68, 245110 (2003)

    Article  ADS  Google Scholar 

  12. M.C. Netti, A. Harris, J.J. Baumberg, D.M. Whittaker, M.B.D. Charlton, M.E. Zoorob, G.J. Parker, Phys. Rev. Lett. 86, 1526 (2001)

    Article  ADS  Google Scholar 

  13. S. Enoch, G. Tayeb, B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003)

    Article  ADS  Google Scholar 

  14. V.N. Astratov, R.M. Stevenson, I.S. Culshaw, D.M. Whittaker, M.S. Skolnick, T.F. Krauss, R.M. De La Rue, Appl. Phys. Lett. 77, 178 (2000)

    Article  ADS  Google Scholar 

  15. G. von Freymann, W. Koch, D.C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R.B. Wehrspohn, U. Gosele, Appl. Phys. Lett. 83, 614 (2003)

    Article  ADS  Google Scholar 

  16. T. Ito, S. Okazaki, Nature 406, 1027 (2000)

    Article  Google Scholar 

  17. W.W. Zhou, C. Rutherglen, P.J. Burke, Nano Res. 1, 158 (2008)

    Article  Google Scholar 

  18. Y.N. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides, Chem. Rev. 99, 1823 (1999)

    Article  Google Scholar 

  19. D.W. Xu, E. Graugnard, J.S. King, L.W. Zhong, C.J. Summers, Nano Lett. 4, 2223 (2004)

    Article  ADS  Google Scholar 

  20. Y. Li, W. Cai, G. Duan, Chem. Mater. 20, 615 (2008)

    Article  Google Scholar 

  21. Z.G. Li, W.P. Cai, P.S. Liu, Q.T. Li, L.J. Zou, J. Phys. Chem. C 114, 2300 (2010)

    Article  Google Scholar 

  22. G.T. Duan, W.P. Cai, Y.Y. Luo, Y. Li, Y. Lei, Appl. Phys. Lett. 89, 181918 (2006)

    Article  ADS  Google Scholar 

  23. X.L. Zhu, L. Shi, X.H. Liu, J. Zi, Z.L. Wang, Nano Res. 3, 807 (2010)

    Article  Google Scholar 

  24. L.Z. Liu, G.S. Huang, L.L. Wang, T.H. Li, X.L. Wu, Appl. Phys. Lett. 94, 151903 (2009)

    Article  ADS  Google Scholar 

  25. C. David, P. Haberling, M. Schnieper, J. Sochtig, C. Aschokke, Microelectron. Eng. 61, 435 (2002)

    Article  Google Scholar 

  26. K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the NSF of China (Grant Nos. 60976014, 60976004 and 11074075) and the Key Basic Research Project of Scientific and Technology Committee of Shanghai (Grant No. 09DJ1400200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Yu, K., Li, B. et al. Observation of unconventional optical diffraction in α-Fe2O3/Si two-dimensional photonic crystal slab fabricated by sol-gel method. Appl. Phys. B 107, 119–124 (2012). https://doi.org/10.1007/s00340-011-4851-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4851-2

Keywords

Navigation