Understanding plasmon resonances of metal-coated colloidal crystal monolayers

Abstract

Metal films deposited over two-dimensional colloidal crystals (MFoCC) constitute a low-cost periodic structure with interesting photonic and plasmonic properties. It has previously been shown that this structure exhibits a behaviour similar to the well-known Extraordinary Optical Transmission (EOT) of metallic hole arrays in planar films. Here, we explore the transmission characteristics of AgFoCC by systematic comparison with that of the bare CC. Furthermore with additional reflectivity measurements we evaluate the AgFoCC overall plasmonic response, which, notably, exhibits a strong plasmon absorption band at wavelengths larger than those of the transmitted maximum. By corroborating these results with finite-difference time-domain electromagnetic simulations, we identify a hybrid metal-dielectric propagative mode in the transmission mechanism. On the contrary a strongly localized mode is responsible for the maximum light absorption by this structure. These results shed new light on the current understanding of this highly promising plasmonic structure, being useful for the design of surface-enhanced Raman scattering and enhanced fluorescence substrates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    E. Ozbay, Science 311, 189 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    W. Murray, W. Barnes, Adv. Mater. 19, 3771 (2007)

    Article  Google Scholar 

  4. 4.

    W.A. Murray, S. Astilean, W.L. Barnes, Phys. Rev. B 69, 165407 (2004)

    ADS  Article  Google Scholar 

  5. 5.

    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    ADS  Article  Google Scholar 

  6. 6.

    H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)

    ADS  Article  Google Scholar 

  7. 7.

    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Article  Google Scholar 

  8. 8.

    Y. Wang, Y. Ye, X. Wang, X. Qian, Appl. Phys. B 102, 863 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    F. Eftekhari, R. Gordon, J. Ferreira, A.G. Brolo, D. Sinton, Appl. Phys. Lett. 92, 253103 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    J. Dintinger, S. Klein, T. Ebbesen, Adv. Mater. 18, 1267 (2006)

    Article  Google Scholar 

  11. 11.

    J.V. Coe, J.M. Heer, S. Teeters-Kennedy, H. Tian, K.R. Rodriguez, Annu. Rev. Phys. Chem. 59, 179 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    C. Genet, T.W. Ebbesen, Nature 445, 39 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    M.M.J. Treacy, Phys. Rev. B 66, 195105 (2002)

    ADS  Article  Google Scholar 

  14. 14.

    H. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    P. Zhan, Z. Wang, H. Dong, J. Sun, H.-T. Wang, S. Zhu, N. Ming, J. Zi, Adv. Mater. 18, 1612 (2006)

    Article  Google Scholar 

  16. 16.

    L. Landström, D. Brodoceanu, K. Piglmayer, D. Bäuerle, Appl. Phys. A 84, 373 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    C. Farcau, S. Astilean, J. Opt. A, Pure Appl. Opt. 9, S345 (2007)

    Article  Google Scholar 

  18. 18.

    Z. Wang, Y. Ye, Y. Zhang, J. Zhang, Appl. Phys. A 97, 225 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  19. 19.

    Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, Z. Wang, Appl. Phys. A 92, 291 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, J. Raman Spectrosc. 36, 471 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    C. Farcau, S. Astilean, Appl. Phys. Lett. 95, 193110 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    M.H. Kim, S.H. Im, O.O. Park, Adv. Funct. Mater. 15, 1329 (2005)

    Article  Google Scholar 

  23. 23.

    F. Járai-Szabó, Z. Néda, S. Aştilean, C. Farcău, A. Kuttesch, Eur. Phys. J. E 23, 7 (2007)

    Article  Google Scholar 

  24. 24.

    N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Nature 361, 26 (1993)

    ADS  Article  Google Scholar 

  25. 25.

    Lumerical Solutions, Inc., http://www.lumerical.com/

  26. 26.

    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    ADS  Article  Google Scholar 

  27. 27.

    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)

    Article  Google Scholar 

  28. 28.

    C. Farcau, E. Vinţeler, S. Aştilean, J. Optoelectron. Adv. Mater. 10, 3165 (2008)

    Google Scholar 

  29. 29.

    H.T. Miyazaki, H. Miyazaki, K. Ohtaka, T. Sato, J. Appl. Phys. 87, 7152 (2000)

    ADS  Article  Google Scholar 

  30. 30.

    Y. Kurokawa, H. Miyazaki, Y. Jimba, Phys. Rev. B 65, 201102 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    M. Sarrazin, J. Vigneron, J. Vigoureux, Phys. Rev. B 67, 085415 (2003)

    ADS  Article  Google Scholar 

  32. 32.

    H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, T.W. Odom, Opt. Express 17, 2334 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    C. Lopez, J. Opt. A, Pure Appl. Opt. 8, R1 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    M. Cortie, M. Ford, Nanotechnology 18, 235704 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    A.I. Maaroof, M.B. Cortie, N. Harris, L. Wieczorek, Small 4, 2292 (2008)

    Article  Google Scholar 

  38. 38.

    L. Landstrom, D. Brodoceanu, D. Bauerle, F.J. Garcia-Vidal, S.G. Rodrigo, L. Martin-Moreno, Opt. Express 17, 761 (2009)

    ADS  Article  Google Scholar 

  39. 39.

    C. Farcau, S. Astilean, J. Phys. Chem. C 114, 11717 (2010)

    Article  Google Scholar 

  40. 40.

    L. Baia, M. Baia, J. Popp, S. Astilean, J. Phys. Chem. B 110, 23982 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CNCSIS–UEFISCSU, project number PNII-ID_PCCE_129/2008. The author, M. Giloan, wish to thank for the financial support provided from programs co-financed by the Sectoral Operational Programme Human Resources Development, contract POSDRU 6/1.5/S/3—“Doctoral studies: through science towards society.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Astilean.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farcau, C., Giloan, M., Vinteler, E. et al. Understanding plasmon resonances of metal-coated colloidal crystal monolayers. Appl. Phys. B 106, 849–856 (2012). https://doi.org/10.1007/s00340-011-4849-9

Download citation

Keywords

  • SERS
  • Colloidal Crystal
  • Plasmon Excitation
  • Hole Array
  • Propagative Mode