Skip to main content
Log in

On the application of radio frequency voltages to ion traps via helical resonators

  • Published:
Applied Physics B Aims and scope Submit manuscript


Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q factor, input power and the properties of the resonant circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  1. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  2. J.J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert, D.J. Wineland, IEEE Trans. Instrum. Meas. 40, 126 (1991)

    Article  Google Scholar 

  3. P.T. H Fisk, M.J. Sellars, M.A. Lawn, G. Coles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344 (1997)

    Article  Google Scholar 

  4. D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  5. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  6. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, J. Appl. Phys. 105, 013114 (2009)

    Article  ADS  Google Scholar 

  8. P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Phys. Rev. A 80, 060301 (2009)

    Article  ADS  Google Scholar 

  9. D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)

    Article  ADS  Google Scholar 

  10. H. Schmitz, A. Friedenauer, C. Schneider, R. Matjeschk, M. Enderlein, T. Huber, J. Glueckert, D. Porras, T. Schaetz, Appl. Phys. B, Lasers Opt. 95, 195 (2009)

    Article  ADS  Google Scholar 

  11. M. Yu, V. Dokas, in Proceedings of 34th European Microwave Conference, vol. 2 (2004), pp. 989–992

    Google Scholar 

  12. J.C. Collingwood, J.W. White, J. Sci. Instrum. 44, 509 (1967)

    Article  ADS  Google Scholar 

  13. W. Meyer, IEEE Trans. Microw. Theory Tech. 29, 240 (1981)

    Article  ADS  Google Scholar 

  14. W.W. Macalpine, R.O. Schildknecht, Proc. IRE 47, 2099 (1959)

    Article  Google Scholar 

  15. P.K. Ghosh, Ion Traps (Oxford University Press, Oxford, 1996)

    Google Scholar 

  16. M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Monroe, Appl. Phys. B, Lasers Opt. 78, 639 (2004)

    Article  ADS  Google Scholar 

  17. D. Hucul, M. Yeo, W.K. Hensinger, J. Rabchuk, S. Olmschenk, C. Monroe, Quantum Inf. Comput. 8, 501 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  19. R.G. Medhurst, Wir. Eng., February and March 35, 80 (1947)

    Google Scholar 

  20. A.I. Zverev, H.J. Blinchikoff, IEEE Trans. Component Parts 8, 99 (1961)

    Article  Google Scholar 

  21. M.D. Hughes, B. Lekitsch, J.A. Broersma, W.K. Hensinger, Contemp. Phys. 52, 505 (2011)

    Article  ADS  Google Scholar 

Download references


This work was supported by the UK Engineering and Physical Sciences Research Council (EP/E011136/1 and EP/G007276/1), the European Commission’s Sixth Framework Marie Curie International Reintegration Programme (Grant No. MIRG-CT-2007-046432), the Nuffield Foundation, and the University of Sussex.

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. K. Hensinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siverns, J.D., Simkins, L.R., Weidt, S. et al. On the application of radio frequency voltages to ion traps via helical resonators. Appl. Phys. B 107, 921–934 (2012).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: