Skip to main content
Log in

Polarization sensitive sub-wavelength metallic structures: toward near-field light confinement control

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we seek to demonstrate spatial near field light confinement with a truly sub-wavelength resolution in the visible range. For that purpose, an opaque metallic screen is pierced with an array of rectangular nano-apertures which support polarization sensitive guided modes. We show that it is possible to switch on and off sub-wavelength apertures about only 200 nanometers away. Theoretical results have been performed (3D-FDTD home-made code) and are in good agreement with the experimental results. These kinds of nano-structures might offer a convenient and versatile way to sub-wavelength light addressing, optical trapping, molecular, or nano-probing, non-linear spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.C. Neacsu, S. Berweger, R.L. Olmon, L.V. Saraf, C. Ropers, M.B. Raschke, Nano Lett. 10, 592 (2010)

    Article  ADS  Google Scholar 

  2. E.J. Sánchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  3. F.I. Baida, Y. Poujet, B. Guizal, D. Van Labeke, Opt. Commun. 256, 190 (2005)

    Article  ADS  Google Scholar 

  4. P. Ghenuche, S. Cherukulappurath, T.H. Taminiau, N.F. Van Hulst, Phys. Rev. Lett. 101, 116805 (2008)

    Article  ADS  Google Scholar 

  5. G. Volpe, S. Cherukulappurath, R.J. Parramon, G. Molina-Terriza, Nano Lett. 9, 3608 (2009)

    Article  ADS  Google Scholar 

  6. H. Caglayan, I. Bulu, M. Loncar, E. Ozbay, Opt. Lett. 34, 88 (2009)

    Article  ADS  Google Scholar 

  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003)

    Article  ADS  Google Scholar 

  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  9. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  10. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)

    Article  ADS  Google Scholar 

  11. S. Choi, D. Park, C. Lienau, M.S. Jeong, C.C. Byeon, D. Ko, D.S. Kim, Opt. Express 16, 12075 (2008)

    Article  ADS  Google Scholar 

  12. G. Lévêque, O.J.F. Martin, Phys. Rev. Lett. 100, 117402 (2008)

    Article  ADS  Google Scholar 

  13. X. Li, M.I. Stockman, Phys. Rev. B 77, 195109 (2008)

    Article  ADS  Google Scholar 

  14. M.I. Stockman, D.J. Bergman, T. Kobayashi, Phys. Rev. B 69, 54202 (2004)

    Article  ADS  Google Scholar 

  15. M.I. Stockman, S.V. Faleev, D.J. Bergmanl, Physica B 338, 361 (2003)

    Article  ADS  Google Scholar 

  16. M. Sukharev, T. Seideman, Nano Lett. 6, 715 (2006)

    Article  ADS  Google Scholar 

  17. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  18. J.C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T.W. Ebbesen, T.C. Weeber, Phys. Rev. B 70, 235406 (2004)

    Article  ADS  Google Scholar 

  19. F.I. Baida, Opt. Express 18, 812 (2010)

    Article  Google Scholar 

  20. R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005)

    Article  ADS  Google Scholar 

  21. F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, A. Belkhir, Appl. Phys. B 79, 1 (2004)

    Article  ADS  Google Scholar 

  22. F.I. Baida, D. Van Labeke, Opt. Commun. 209, 17 (2002)

    Article  ADS  Google Scholar 

  23. M.H. Chowdhury, J.M. Catchmark, J.R. Lakowicza, Appl. Phys. Lett. 91, 103118 (2007)

    Article  ADS  Google Scholar 

  24. D. Egorov, B.S. Dennis, G. Blumberg, M.I. Hafte, Phys. Rev. B 70, 033404 (2004)

    Article  ADS  Google Scholar 

  25. H. Gao, J. Henzie, T.W. Odom, Nano Lett. 6, 2104 (2006)

    Article  ADS  Google Scholar 

  26. S.C. Hohng, Y.C. Yoon, D.S. Kima, V. Malyarchukl, Appl. Phys. Lett. 81, 3239 (2002)

    Article  ADS  Google Scholar 

  27. D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Phys. Rev. Lett. 91, 143901 (2003)

    Article  ADS  Google Scholar 

  28. E.S. Kwak, J. Henzie, S.H. Chang, S.K. Gray, G.C. Schatz, T.W. Odom, Nano Lett. 5, 1963 (2005)

    Article  ADS  Google Scholar 

  29. M. Mrejen, A. Israel, H. Taha, M. Palchan, A. Lewis, Opt. Express 415, 9129 (2007)

    Article  ADS  Google Scholar 

  30. Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, P. Hoffmann, Photonics Nanostruct. Fundam. Appl. 4, 47 (2006)

    Article  ADS  Google Scholar 

  31. J. Greffet, R. Carminati, Prog. Surf. Sci. 56, 133 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Government of Senegal which supply A. Ndao’s research grant and by the U.F.R. Sciences and Techniques of the University of Franche-Comté which earmark funds. The authors would like to thank Roland Salut from the platform of technology, MIMENTO at FEMTO-ST, for greatly helping with the fabrication process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Salvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndao, A., Vagne, Q., Salvi, J. et al. Polarization sensitive sub-wavelength metallic structures: toward near-field light confinement control. Appl. Phys. B 106, 857–862 (2012). https://doi.org/10.1007/s00340-011-4835-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4835-2

Keywords

Navigation