Optogalvanic spectroscopy of metastable states in Yb+

Abstract

The metastable 2F7/2 and 2D3/2 states of Yb+ are of interest for applications in metrology and quantum information and also act as dark states in laser cooling. These metastable states are commonly repumped to the ground state via the 638.6 nm 2F7/21D[5/2]5/2 and 935.2 nm 2D3/23D[3/2]1/2 transitions. We have performed optogalvanic spectroscopy of these transitions in Yb+ ions generated in a discharge. We measure the pressure broadening coefficient for the 638.6 nm transition to be 70±10 MHz mbar−1. We place an upper bound of 375 MHz/nucleon on the 638.6 nm isotope splitting and show that our observations are consistent with theory for the hyperfine splitting. Our measurements of the 935.2 nm transition extend those made by Sugiyama et al., showing well-resolved isotope and hyperfine splitting (Sugiyama and Yoda in IEEE Trans. Instrum. Meas. 44: 140, 1995). We obtain high signal-to-noise, sufficient for laser stabilisation applications (Streed et al. in Appl. Phys. Lett. 93: 071103, 2008).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Sugiyama, J. Yoda, IEEE Trans. Instrum. Meas. 44, 140 (1995)

    Article  Google Scholar 

  2. 2.

    E.W. Streed, T.J. Weinhold, D. Kielpinski, Appl. Phys. Lett. 93, 071103 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    M. Roberts, P. Taylor, G.P. Barwood, P. Gill, H.A. Klein, W.R.C. Rowley, Phys. Rev. Lett. 78, 1876 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    S.A. Webster, P. Taylor, M. Roberts, G.P. Barwood, P. Gill, Phys. Rev. A 65, 052501 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    P.J. Blythe, S.A. Webster, H.S. Margolis, S.N. Lea, G. Huang, S.-K. Choi, W.R.C. Rowley, P. Gill, R.S. Windeler, Phys. Rev. A 67, 020501 (2003)

    ADS  Article  Google Scholar 

  6. 6.

    K. Hosaka, S.A. Webster, P.J. Blythe, A. Stannard, D. Beaton, H.S. Margolis, S.N. Lea, P. Gill, IEEE Trans. Instrum. Meas. 54, 759 (2005)

    Article  Google Scholar 

  7. 7.

    K. Hosaka, S.A. Webster, A. Stannard, B.R. Walton, H.S. Margolis, P. Gill, Phys. Rev. A 79, 033403 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    I. Sherstov, M. Okhapkin, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. A 81, 021805 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    P. Taylor, M. Roberts, R.B.M. Clarke, G.P. Barwood, W.R.C. Rowley, P. Gill, Phys. Rev. A 56, 2699 (1997)

    ADS  Article  Google Scholar 

  10. 10.

    P. Taylor, M. Roberts, G.M. Macfarlane, G.P. Barwood, W.R.C. Rowley, P. Gill, Phys. Rev. A 60, 2829 (1999)

    ADS  Article  Google Scholar 

  11. 11.

    N. Yu, L. Maleki, Phys. Rev. A 61, 022507 (2000)

    ADS  Article  Google Scholar 

  12. 12.

    S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    H. Lehmitz, J. Hattendorf-Ledwoch, R. Blatt, H. Harde, Phys. Rev. Lett. 62, 2108 (1989)

    ADS  Article  Google Scholar 

  14. 14.

    P. Hannaford, Contemp. Phys. 24, 251 (1983)

    ADS  Article  Google Scholar 

  15. 15.

    B. Barbieri, N. Beverini, A. Sasso, Rev. Mod. Phys. 62, 603 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    H.J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, New York, 1999)

    Google Scholar 

  17. 17.

    A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)

    Google Scholar 

  18. 18.

    A. Martensson-Pendrill, D.S. Gough, P. Hannaford, Phys. Rev. A 49, 3351 (1994)

    ADS  Article  Google Scholar 

  19. 19.

    J.J. McLoughlin, A.H. Nizamani, J.D. Siverns, R.C. Sterling, M.D. Hughes, B. Lekitsch, B. Stein, S. Weidt, W.K. Hensinger, Phys. Rev. A 83, 013406 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    R.J. Hayden, D.C. Hess, M.G. Inghram, Phys. Rev. 75, 322 (1949)

    ADS  Article  Google Scholar 

  21. 21.

    F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

    ADS  Article  Google Scholar 

  22. 22.

    P. Jönsson, F.A. Parpia, C. Froese Fischer, Comput. Phys. Commun. 96, 301 (1996)

    ADS  Article  Google Scholar 

  23. 23.

    T. Brage, C. Proffitt, D.S. Leckrone, Astrophys. J. 513, 524 (1999)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Petrasiunas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrasiunas, M.J., Streed, E.W., Weinhold, T.J. et al. Optogalvanic spectroscopy of metastable states in Yb+ . Appl. Phys. B 107, 1053–1059 (2012). https://doi.org/10.1007/s00340-011-4791-x

Download citation

Keywords

  • Metastable State
  • Isotope Shift
  • Saturation Intensity
  • Homogeneous Linewidth
  • Optogalvanic Spectroscopy