A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

Abstract

We present a solid-state laser system that generates 750 mW of continuous-wave, single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to ultraviolet by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495-GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Blatt, D. Wineland, Nature 453, 1008 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    D.J. Wineland, D. Leibfried, Laser Phys. Lett. 8, 175 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    D.J. Wineland, Phys. Scr. T 137, 014007 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

    Article  Google Scholar 

  5. 5.

    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, New J. Phys. 12, 033031 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    P.W. Shor, Phys. Rev. A 52, R2493 (1995)

    ADS  Article  Google Scholar 

  8. 8.

    A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. 9.

    R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T.W. Hänsch, T. Schätz, Appl. Phys. B 84, 371 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    H. Schnitzler, U. Fröhlich, T.K.W. Boley, A.E.M. Clemen, J. Mlynek, A. Peters, S. Schiller, Appl. Opt. 41, 7000 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, Appl. Phys. B 103, 27 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    D.L. Hart, L. Goldberg, W.K. Burns, Electron. Lett. 35, 52 (1999)

    Article  Google Scholar 

  14. 14.

    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)

    ADS  Article  Google Scholar 

  15. 15.

    G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968)

    ADS  Article  Google Scholar 

  16. 16.

    G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, Opt. Lett. 22, 1834 (1997)

    ADS  Article  Google Scholar 

  17. 17.

    H. Moosmüller, J.D. Vance, Opt. Lett. 22, 1135 (1997)

    ADS  Article  Google Scholar 

  18. 18.

    W.R. Bosenberg, J.I. Alexander, L.E. Myers, R.W. Wallace, Opt. Lett. 23, 207 (1998)

    ADS  Article  Google Scholar 

  19. 19.

    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, 3rd edn., ed. by A.L. Schawlow, A.E. Siegman, T. Tamir (Springer, Berlin, 1999)

    Google Scholar 

  20. 20.

    A. Yariv, Optical Electronics, 4th edn. (Saunders College, Philadelphia, 1991)

    Google Scholar 

  21. 21.

    W. Sellmeier, Ann. Phys. Chem. 143, 272 (1871). Note that the page number for this article is often incorrectly quoted as 271

    ADS  Article  Google Scholar 

  22. 22.

    D. Eimerl, L. Davis, S. Velsko, E.K. Graham, A. Zalkin, J. Appl. Phys. 62, 1968 (1987)

    ADS  Article  Google Scholar 

  23. 23.

    V.D. Volosov, Sov. Phys. Tech. Phys. 14, 1652 (1970)

    ADS  Google Scholar 

  24. 24.

    F.M. Librecht, J.A. Simons, IEEE J. Quantum Electron. QE-11, 850 (1975)

    ADS  Article  Google Scholar 

  25. 25.

    D.J. Kuizenga, Appl. Phys. Lett. 21, 570 (1972)

    ADS  Article  Google Scholar 

  26. 26.

    R. Fischer, P.V. Nickles, T.B. Chu, L.-W. Wieczorek, Ann. Phys. 39, 287 (1982)

    Article  Google Scholar 

  27. 27.

    T. Freegarde, J. Coutts, J. Walz, D. Leibfried, T.W. Hänsch, J. Opt. Soc. Am. B 14, 2010 (1997)

    ADS  Article  Google Scholar 

  28. 28.

    J.C. Sandberg, Research toward laser spectroscopy of trapped atomic hydrogen. PhD thesis, MIT (1993)

  29. 29.

    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)

    ADS  Article  Google Scholar 

  30. 30.

    Details are provided at http://ionizer.sourceforge.net/LaserBrothers.html

  31. 31.

    C.S. Adams, A.I. Ferguson, Opt. Commun. 79, 219 (1990)

    ADS  Article  Google Scholar 

  32. 32.

    E.S. Polzik, H.J. Kimble, Opt. Lett. 16, 1400 (1991)

    ADS  Article  Google Scholar 

  33. 33.

    D.N. Nikogosyan, Appl. Phys. A 52, 359 (1991)

    ADS  Article  Google Scholar 

  34. 34.

    K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. C. Wilson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, A.C., Ospelkaus, C., VanDevender, A.P. et al. A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions. Appl. Phys. B 105, 741–748 (2011). https://doi.org/10.1007/s00340-011-4771-1

Download citation

Keywords

  • Signal Beam
  • Raman Laser
  • Gate Operation
  • Periodically Pole Lithium Niobate
  • Waist Size