Advertisement

Applied Physics B

, 105:17 | Cite as

Bose–Einstein condensation of paraxial light

  • J. Klaers
  • J. Schmitt
  • T. Damm
  • F. Vewinger
  • M. Weitz
Article

Abstract

Photons, due to the virtually vanishing photon–photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose–Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose–Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose–Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

Keywords

Pump Power Pump Beam Photon Number Einstein Condensation Absorb Pump Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Einstein, Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 1, 3 (1925) MathSciNetGoogle Scholar
  2. 2.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.M. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker, R. Grimm, Science 302, 2101 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    M. Greiner, C. Regal, D. Jin, Nature 426, 537 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Siegman, Lasers (Univ. Science Books, Sausalito, 1986) Google Scholar
  9. 9.
    P.W. Milonni, J.H. Eberly, Lasers (Wiley, New York, 1988) Google Scholar
  10. 10.
    M.O. Scully, M.S. Zubairy, Quantum Optics, 1st edn. (Cambridge University Press, Cambridge, 1997) Google Scholar
  11. 11.
    M. Planck, Ann. Phys. 309, 553 (1901) CrossRefGoogle Scholar
  12. 12.
    S. Bose, Z. Phys. 26, 178 (1924) ADSCrossRefGoogle Scholar
  13. 13.
    K. Huang, Statistical Mechanics (Wiley, New York, 1987) zbMATHGoogle Scholar
  14. 14.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Bose–Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.K, Wieman Proceedings of the International School of Physics ‘Enrico Fermi’, Course CXL, (IOS Press, Amsterdam, 1999) Google Scholar
  15. 15.
    Y.B. Zel’dovich, E.V. Levich, Sov. Phys. JETP 28, 1287 (1969) ADSGoogle Scholar
  16. 16.
    E. Müller, Physica A 139, 165 (1986) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R.Y. Chiao, Phys. Rev. A 60, 4114 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    R.Y. Chiao, Opt. Commun. 179, 157 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    M.W. Mitchell, C.I. Hancox, R.Y. Chiao, Phys. Rev. A 62, 043819 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    E.L. Bolda, R.Y. Chiao, W.H. Zurek, Phys. Rev. Lett. 86, 416 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    C.F. McCormick, R.Y. Chiao, J.M. Hickmann, Opt. Express 10, 581 (2002) ADSGoogle Scholar
  22. 22.
    C.F. McCormick, Transverse effects in nonlinear optics: toward the photon superfluid. Ph.D. thesis, University of California, Berkeley (2003) Google Scholar
  23. 23.
    P. Navez, Phys. Rev. A 68, 5 (2003) Google Scholar
  24. 24.
    R.Y. Chiao, T.H. Hansson, J.M. Leinaas, S. Viefers, Phys. Rev. A 69, 063816 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    J. Martinez, Anton. J. Opt. Soc. Am. B 23, 1644 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    B.T. Seaman, M.J. Holland, arXiv:0807.1356 (2008)
  27. 27.
    C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Phys. Rev. Lett. 95, 263901 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, G. Ruocco, Phys. Rev. Lett. 101, 143901 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    P. Aschieri, J. Garnier, C. Michel, V. Doya, A. Picozzi, Phys. Rev. A 83, 033838 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    R. Weill, B. Levit, A. Bekker, B. Fischer, O. Gat, Opt. Express 18, 16520 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang Nature 443, 409 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, Science 316, 1007 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    J. Kasprzak, M. Richard, A. Baas, B. Deveaud, R. André, J.-P. Poizat, L.S. Dang, Phys. Rev. Lett. 100, 1 (2008) CrossRefGoogle Scholar
  34. 34.
    J. Kasprzak, D.D. Solnyshkov, R. Andre, L.S. Dang, G. Malpuech, Phys. Rev. Lett. 101, 146404 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008) CrossRefGoogle Scholar
  36. 36.
    A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Nat. Phys. 5, 805 (2009) CrossRefGoogle Scholar
  37. 37.
    J. Klaers, F. Vewinger, M. Weitz, Nat. Phys. 6, 512 (2010) CrossRefGoogle Scholar
  38. 38.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    E.H. Kennard, Phys. Rev. 11, 29 (1918) ADSCrossRefGoogle Scholar
  40. 40.
    E.H. Kennard, Phys. Rev. 29, 466 (1927) ADSCrossRefGoogle Scholar
  41. 41.
    B.I. Stepanov, Dokl. Akad. Nauk SSSR 112, 839 (1957) Google Scholar
  42. 42.
    L.P. Kazachenko, B.I. Stepanov, Opt. Spektrosk. 2, 339 (1957) Google Scholar
  43. 43.
    J. Klaers, Bose–Einstein-Kondensation von paraxialem Licht. Ph.D. thesis, University of Bonn (2011) Google Scholar
  44. 44.
    H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966) ADSCrossRefGoogle Scholar
  45. 45.
    V. Bagnato, D. Kleppner, Phys. Rev. A 44, 7439 (1991) ADSCrossRefGoogle Scholar
  46. 46.
    D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, J. Phys.-Paris IV 116, 5 (2004) Google Scholar
  47. 47.
    W.J. Mullin, J. Low Temp. Phys. 106, 615 (1997) ADSCrossRefGoogle Scholar
  48. 48.
    W.J. Mullin, J. Low Temp. Phys. 110, 167 (1998) CrossRefGoogle Scholar
  49. 49.
    H. Yokoyama, S.D. Brorson, J. Appl. Phys. 66, 4801 (1989) ADSCrossRefGoogle Scholar
  50. 50.
    E. De Angelis, F. De Martini, P. Mataloni, J. Opt. B, Quantum Semiclass. Opt. 2, 149 (2000) ADSCrossRefGoogle Scholar
  51. 51.
    K.H. Drexhage, in Progress in Optics, ed. by E. Wolf (North-Holland, Amsterdam, 1974) Google Scholar
  52. 52.
    R. Hulet, E. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985) ADSCrossRefGoogle Scholar
  53. 53.
    W. Jhe, A. Anderson, E. Hinds, D. Meschede, L. Moi, S. Haroche, Phys. Rev. Lett. 58, 666 (1987) ADSCrossRefGoogle Scholar
  54. 54.
    F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987) ADSCrossRefGoogle Scholar
  55. 55.
    F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, Phys. Rev. A 43, 2480 (1991) ADSCrossRefGoogle Scholar
  56. 56.
    P. Milonni, J. Mod. Opt. 9, 119 (2007) Google Scholar
  57. 57.
    R. Loudon, M.J. Adams, IEE Proc. Optoelectron. 1, 289 (2007) Google Scholar
  58. 58.
    D. Meschede, Phys. Rep. 211, 201 (1992) ADSCrossRefGoogle Scholar
  59. 59.
    H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006) ADSCrossRefGoogle Scholar
  60. 60.
    I. Fujiwara, D. Ter Haar, H. Wergeland, J. Stat. Phys. 2, 329 (1970) ADSCrossRefGoogle Scholar
  61. 61.
    R.M. Ziff, G.E. Uhlenbeck, M. Kac, Phys. Rep. 32, 169 (1977) MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Vi.V. Kocharovsky, Vl.V. Kocharovsky, M. Holthaus, C.H. Raymond Ooi, A.A. Svidzinsky, W. Ketterle, M.O. Scully, Adv. At. Mol. Opt. Phys. 53, 291 (2006) Google Scholar
  63. 63.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999) Google Scholar
  64. 64.
    D.A. Sawicki, R.S. Knox, Phys. Rev. A 54, 4837 (1996) ADSCrossRefGoogle Scholar
  65. 65.
    J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, (2011, in preparation) Google Scholar
  66. 66.
    F. De Martini, G. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988) ADSCrossRefGoogle Scholar
  67. 67.
    H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S.D. Brorson, E.P. Ippen, M. Suzuki, Opt. Quantum Electron. 24, 245 (1992) CrossRefGoogle Scholar
  68. 68.
    Y. Yamamoto, S. Machida, G. Björk, Opt. Quantum Electron. 24, 215 (1992) CrossRefGoogle Scholar
  69. 69.
    D. Magde, R. Wong, P.G. Seybold, J. Photochem. Photobiol. A, Chem. 75, 327 (2002) CrossRefGoogle Scholar
  70. 70.
    L.R. Wilson, B.S. Richards, Appl. Opt. 48, 212 (2009) ADSCrossRefGoogle Scholar
  71. 71.
    A. Penzkofer, Y. Lu, Chem. Phys. 103, 399 (1986) ADSCrossRefGoogle Scholar
  72. 72.
    A. Penzkofer, W. Leupacher, J. Lumin. 37, 61 (1987) CrossRefGoogle Scholar
  73. 73.
    M. Fischer, J. Georges, Chem. Phys. Lett. 260, 115 (1996) ADSCrossRefGoogle Scholar
  74. 74.
    S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science 289, 604 (2000) ADSCrossRefGoogle Scholar
  75. 75.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. Van Driel, Nature 405, 437 (2000) ADSCrossRefGoogle Scholar
  76. 76.
    R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. 6, 716 (1970) ADSCrossRefGoogle Scholar
  77. 77.
    N. Tammuz, R.P. Smith, R.L.D. Campbell, S. Beattie, S. Moulder, J. Dalibard, Z. Hadzibabic, Phys. Rev. Lett. 106, 230401 (2011) ADSCrossRefGoogle Scholar
  78. 78.
    F. De Martini, F. Cairo, P. Mataloni, F. Verzegnassi, Phys. Rev. A 46, 4220 (1992) ADSCrossRefGoogle Scholar
  79. 79.
    E. Ippen, C. Shank, A. Dienes, IEEE J. Quantum Electron. 7, 178 (1971) ADSCrossRefGoogle Scholar
  80. 80.
    O.G. Peterson, S.A. Tuccio, B.B. Snavely, Appl. Phys. Lett. 17, 245 (1970) ADSCrossRefGoogle Scholar
  81. 81.
    M. Kasha, Discuss. Faraday Soc. 9, 14 (1950) CrossRefGoogle Scholar
  82. 82.
    M.E. Lusty, M.H. Dunn, Appl. Phys. B, Lasers Opt. 44, 193 (1987) ADSCrossRefGoogle Scholar
  83. 83.
    A. Nag, D. Goswami, J. Photochem. Photobiol. A, Chem. 206, 188 (2009) CrossRefGoogle Scholar
  84. 84.
    Z. Hadzibabic, J. Dalibard, in Nano Optics and Atomics: Transport of Light and Matter Waves. Proceedings of the International School of Physics Enrico Fermi, vol. CLXXIII (IOS Press, Amsterdam, 2011) Google Scholar
  85. 85.
    Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1111 (2006) ADSCrossRefGoogle Scholar
  86. 86.
    P. Clade, C. Ryu, A. Ramanathan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 102, 170401 (2009) ADSCrossRefGoogle Scholar
  87. 87.
    R. Hanbury Brown, R.Q. Twiss, Nature 178, 1046 (1956) ADSCrossRefGoogle Scholar
  88. 88.
    E.M. Purcell, Nature 178, 1449 (1956) ADSCrossRefGoogle Scholar
  89. 89.
    W. van Sark, K.W. Barnham, L.H. Slooff, A.J. Chatten, A. Búchtemann, A. Meyer, S.J. McCormack, R. Koole, D.J. Farrell, R. Bose, E.E. Bende, A.R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, S.H. Wadman, G.P. van Klink, G. van Koten, A. Meijerink, D. Vanmaekelbergh, Opt. Express 16, 21773 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Klaers
    • 1
  • J. Schmitt
    • 1
  • T. Damm
    • 1
  • F. Vewinger
    • 1
  • M. Weitz
    • 1
  1. 1.Institut für Angewandte PhysikUniversität BonnBonnGermany

Personalised recommendations