Applied Physics B

, Volume 105, Issue 3, pp 669–674 | Cite as

Ethylene and ammonia traces measurements from the patients’ breath with renal failure via LPAS method

  • C. PopaEmail author
  • D. C. A. Dutu
  • R. Cernat
  • C. Matei
  • A. M. Bratu
  • S. Banita
  • D. C. Dumitras


The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD.

Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.


Breath Test Ethylene Concentration Breath Sample Photoacoustic Signal Breath Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Hubert, Ultra Lasertech Inc., 1 (1983) Google Scholar
  2. 2.
    F.J. Harren, F.G.C. Bijnen, J. Reuss, L.A.C.J. Voesenek, C.W.P.M. Blom, Appl. Phys. B 50, 137 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    W. Cao, Y. Duan, Clin. Chem. 52, 800 (2006) CrossRefGoogle Scholar
  4. 4.
    P.R. Galassetti, B. Novak, D. Nemet, C. Rose-Gottron, D.M. Cooper, S. Meinardi, R. Newcomb, F. Zaldivar, D.R. Blake, Diabetes Technol. Ther. 7, 115 (2005) CrossRefGoogle Scholar
  5. 5.
    W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Scomburg, Clin. Chim. Acta 347, 25 (2004) CrossRefGoogle Scholar
  6. 6.
    F. Ferreira da Silva, M. Nobre, A. Fernandes, R. Antunes, D. Almeida, G. Garcia, N.J. Mason, P. Limão-Vieira, J. Phys. Conf. Ser. 101, 012011, 1 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    G.J. Handelman, Blood Purif. 21, 46 (2003) CrossRefGoogle Scholar
  8. 8.
    G. Giubileo, Proc. SPIE 3405, 642 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    K.S. Stevenson, K. Radhakrishnan, C.S. Patterson, L.C. McMillan, K.D. Skeldon, L. Buist, M.J. Padgett, P.G. Shiels, J. Breath Res. 2, 8 (2008) CrossRefGoogle Scholar
  10. 10.
    O. Dale, H. Bergum, T. Lund, T. Nilsen, P. Aadahl, R. Stenseth, Free Radic. Res. 37, 815 (2003) CrossRefGoogle Scholar
  11. 11.
    G. Giubileo, Proceedings of SPIE 4762 (2002) Google Scholar
  12. 12.
    L.R. Narasimhan, W. Goodman, C. Kumar, N. Patel, Proc. Natl. Acad. Sci. USA 98, 4617 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, J. Breath Res., 1, 014001, 12 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Dumitras, D.C. Dutu, C. Matei, A. Magureanu, M. Petrus, C. Popa, J. Optoelectron. Adv. Mater. 9, 3655 (2007) Google Scholar
  15. 15.
    D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, M. Patachia, Rom. Rep. Phys. 60, 593 (2008) Google Scholar
  16. 16.
    D.C. Dumitras, D.C. Dutu, C. Matei, R. Cernat, S. Banita, M. Patachia, A.M. Bratu, M. Petrus, C. Popa, Laser Phys. 21, 796 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    D.C. Dumitras, S. Banita, A.M. Bratu, R. Cernat, D.C.A. Dutu, C. Matei, M. Patachia, M. Petrus, C. Popa, Infrared Phys. Technol. J. 53, 308 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, Sci. Bull. - “Politeh.” Univ. Buchar., Ser. a Appl. Math. Phys. 69, 45 (2007) Google Scholar
  19. 19.
    R. Cernat, C. Matei, A.M. Bratu, C. Popa, D.C.A. Dutu, M. Patachia, M. Petrus, S. Banita, D.C. Dumitras, Rom. Rep. Phys. 62, 617 (2010) Google Scholar
  20. 20.
    C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, K.D. Skeldon, J. Breath Res. 1, 026005, 8 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    K.S. Stevenson, K. Radhakrishnan, C.S. Patterson, L.C. McMillan, K.D. Skeldon, L. Buist, M.J. Padgett, P.G. Shiels, J. Breath Res. 2, 026004, 8 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    G.J. Handelman, L.M. Rosales, D. Barbato, J. Luscher, R. Adhikarla, R.J. Nicolosi, F.O. Finkelstein, C. Ronco, G.A. Kaysen, N.A. Hoenich, N.W. Levin, Free Radic. Biol. Med. 35, 17 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Popa
    • 1
    • 2
    Email author
  • D. C. A. Dutu
    • 1
  • R. Cernat
    • 1
  • C. Matei
    • 1
  • A. M. Bratu
    • 1
  • S. Banita
    • 1
  • D. C. Dumitras
    • 1
  1. 1.Department of LasersNational Institute for Laser, Plasma, and Radiation PhysicsBucharestRomania
  2. 2.Faculty of PhysicsUniversity of BucharestBucharestRomania

Personalised recommendations