Advertisement

Applied Physics B

, Volume 106, Issue 2, pp 261–266 | Cite as

Frequency stabilization of blue extended cavity diode lasers by external cavity optical feedback

  • M. Horstjann
  • V. Nenakhov
  • J. P. Burrows
Article

Abstract

Optical feedback from a high-finesse V-resonator, developed for this study, results in efficient coupling with an extended cavity diode laser, stabilizing its emission frequency and strongly decreasing the laser linewidth. This in turn enhances resonator output power, thus increasing the signal-to-noise ratio when used for the detection of gas phase species by absorption spectroscopy. This effect was directly measured by heterodyning two extended cavity diode lasers at a wavelength of 409 nm with and without the influence of optical feedback from a high-finesse V-resonator. The heterodyne signal of freely running lasers is composed of a set of sharp peaks whose envelope shows a width on the order of 4.5 MHz at a sweep rate of 80 MHz/0.8 s, leading to a laser linewidth of 3 MHz. Optical feedback from the high-finesse V-resonator reduces the heterodyne signal to a single peak with a mean width of 10 kHz, leading to a laser linewidth of 7 kHz. This is the lowest value of linewidth, reported thus far, for diode lasers operating in this wavelength region.

Keywords

Sweep Rate Optical Feedback Free Spectral Range Piezo Actuator Beat Note 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.P. Bogatov, P.G. Eliseev, L.P. Ivanov, A.S. Logginov, M.A. Manko, K.Ya. Senatorov, IEEE J. Quantum Electron. 9, 392 (1973) ADSCrossRefGoogle Scholar
  2. 2.
    B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    Ph. Laurent, A. Clairon, Ch. Bréant, IEEE J. Quantum Electron. 25, 1131 (1989) ADSCrossRefGoogle Scholar
  4. 4.
    M.W. Fleming, A. Mooradian, IEEE J. Quantum Electron. 17, 44 (1981) ADSCrossRefGoogle Scholar
  5. 5.
    F. Kerschbaum, I. Mueller, Astron. Nachr. 330, 574 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    A. Wicht, M. Rudolf, P. Huke, R.-H. Rinkleff, K. Danzmann, Appl. Phys. B 78, 137 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    M.G. Littman, H.J. Metcalf, Appl. Opt. 17, 2224 (1978) ADSCrossRefGoogle Scholar
  8. 8.
    K. Döringshoff, I. Ernsting, R.-H. Rinkleff, S. Schiller, A. Wicht, Opt. Lett. 32, 2876 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhao, Y. Peng, T. Yang, Y. Li, Q. Wang, F. Meng, J. Cao, Z. Fang, T. Li, E. Zang, Opt. Lett. 36, 34 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    H. Patrick, C.E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    K. Hayasaka, Opt. Commun. 206, 401 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    K. Toyoda, Y. Kubota, T. Okano, S. Urabe, Appl. Phys. B 82, 25 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, D. Romanini, Opt. Express 14, 11442 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B 85, 407 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Shevy, J. Kitching, A. Yariv, Opt. Lett. 18, 1071 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    R.W. Tkach, A.R. Chraplyvy, J. Lightwave Technol. 4, 1655 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Umweltphysik (IUP)Universität BremenBremenGermany

Personalised recommendations