Skip to main content
Log in

Control of chirped pulse trains: a speedway for free-optimization experiments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Complex phase-only shaping of intense ultrashort laser pulses is applied to generate highly flexible pulse structures with regular envelopes. By incorporating the linear chirp as additional free parameter into the technique of colored pulses, trains of chirped pulses are produced, capable of independent and simultaneous modulation of relative intensity ratio, optical delay, and individual chirp. Such pulses might find applications in multi-parameter scans or closed-loop feedback measurements. For the latter, we demonstrate that with use of these tailored pulse trains, adaptive feedback control experiments quickly converge. They provide near-optimal solutions, already revealing key features of the system under study. Moreover, seeding standard free-optimization routines with these temporary solutions largely accelerates the search for the closest-possible optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Keller, Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  2. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  3. J. Ye, S.T. Cundiff (eds.), Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Science, New York, 2005)

    Google Scholar 

  4. S.T. Cundiff, A.M. Weiner, Nat. Photonics 4, 760 (2010)

    Article  ADS  Google Scholar 

  5. P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007)

    Article  Google Scholar 

  6. T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)

    Article  ADS  Google Scholar 

  7. R. Levis, G. Menkir, H. Rabitz, Science 292, 709 (2001)

    Article  ADS  Google Scholar 

  8. A. Bartelt, T. Feurer, L. Wöste, Chem. Phys. 318, 207 (2005)

    Article  ADS  Google Scholar 

  9. N.X. Truong, J. Tiggesbäumker, K.H. Meiwes-Broer, J. Opt. 12, 115201 (2010)

    Article  ADS  Google Scholar 

  10. A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  11. A. Weiner, S. Oudin, D. Leaird, D. Reitze, J. Opt. Soc. Am. A 10, 1112 (1993)

    Article  ADS  Google Scholar 

  12. A. Weiner, D. Leaird, Opt. Lett. 15, 51 (1990)

    Article  ADS  Google Scholar 

  13. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, G. Gerber, Appl. Phys. B 88, 519 (2007)

    Article  ADS  Google Scholar 

  14. D. Pestov, V.V. Lozovoy, M. Dantus, Opt. Express 17, 14351 (2009)

    Article  ADS  Google Scholar 

  15. M. Renard, R. Chaux, B. Lavorel, O. Faucher, Opt. Express 12, 473 (2004)

    Article  ADS  Google Scholar 

  16. G. Vogt, P. Nürnberger, R. Selle, F. Dimler, T. Brixner, G. Gerber, Phys. Rev. A 74, 033413 (2006)

    Article  ADS  Google Scholar 

  17. N.X. Truong, S. Göde, J. Tiggesbäumker, K.-H. Meiwes-Broer, Eur. Phys. J. D 63, 275 (2011)

    Article  ADS  Google Scholar 

  18. S. Ashworth, T. Hasche, M. Woerner, E. Riedle, T. Elsaesser, J. Chem. Phys. 104, 5761 (1996)

    Article  ADS  Google Scholar 

  19. G. Cerullo, C. Bardeen, Q. Wang, C. Shank, Chem. Phys. Lett. 262, 362 (1996)

    Article  ADS  Google Scholar 

  20. G. Vogt, P. Nuernberger, T. Brixner, G. Gerber, Chem. Phys. Lett. 433, 211 (2006)

    Article  ADS  Google Scholar 

  21. N.X. Truong, P. Hilse, S. Göde, A. Przystawik, T. Döppner, T. Fennel, T. Bornath, J. Tiggesbäumker, M. Schlanges, G. Gerber, K.H. Meiwes-Broer, Phys. Rev. A 81, 013201 (2010)

    Article  ADS  Google Scholar 

  22. A. Moore, K. Mendham, D. Symes, J. Robinson, E. Springate, M. Mason, R. Smith, J. Tisch, J. Marangos, Appl. Phys. B, Lasers Opt. 80, 101 (2005)

    Article  ADS  Google Scholar 

  23. Y. Fukuda, K. Yamakawa, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Kishimoto, Phys. Rev. A 67, 061201 (2003)

    Article  ADS  Google Scholar 

  24. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Opt. Lett. 25, 575 (2000)

    Article  ADS  Google Scholar 

  25. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)

    Google Scholar 

  26. N.X. Truong, J. Tiggesbäumker, T. Döppner, Meas. Sci. Technol. 21, 085303 (2010)

    Article  ADS  Google Scholar 

  27. F. Grossmann, Theoretical Femtosecond Physics—Atoms and Molecules in Strong Laser Fields (Springer, Berlin, 2008)

    Google Scholar 

  28. H. Pohlheim, Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise für die Praxis (Springer, Berlin, 2000)

    Google Scholar 

  29. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, London, 2000)

    Google Scholar 

  30. R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 2000)

    Google Scholar 

  31. P. Nuernberger, Opt. Commun. 282, 227 (2009)

    Article  ADS  Google Scholar 

  32. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, London, 2006)

    Google Scholar 

  33. R. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  34. S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220, 671 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. T.C. Gunaratne, X. Zhu, V.V. Lozovoy, M. Dantus, Chem. Phys. 338, 259 (2007)

    Article  ADS  Google Scholar 

  36. S. Rausch, T. Binhammer, A. Harth, F.X. Kaertner, U. Morgner, Opt. Express 16, 17410 (2008)

    Article  ADS  Google Scholar 

  37. S. Bonora, D. Brida, P. Villoresi, G. Cerullo, Opt. Express 18, 23147 (2010)

    Article  ADS  Google Scholar 

  38. P. Marquetand, P. Nuernberger, G. Vogt, T. Brixner, V. Engel, Europhys. Lett. 80, 53001 (2007)

    Article  ADS  Google Scholar 

  39. M. Wollenhaupt, M. Krug, J. Koehler, T. Bayer, C. Sarpe-Tudoran, T. Baumert, Appl. Phys. B 95, 245 (2009)

    Article  ADS  Google Scholar 

  40. C.J. Bardeen, Q. Wang, C.V. Shank, Phys. Rev. Lett. 75, 3410 (1995)

    Article  ADS  Google Scholar 

  41. C.J. Bardeen, Q. Wang, C.V. Shank, J. Phys. Chem. A 102, 2759 (1998)

    Article  Google Scholar 

  42. G. Lanzani, M. Zavelani-Rossi, G. Cerullo, D. Comoretto, G. Dellepiane, Phys. Rev. B 69, 134302 (2004)

    Article  ADS  Google Scholar 

  43. A. Wand, S. Kallush, O. Shoshanim, O. Bismuth, R. Kosloff, S. Ruhman, Phys. Chem. Chem. Phys. 12, 2149 (2010)

    Article  Google Scholar 

  44. T. Fennel, T. Döppner, J. Passig, C. Schaal, J. Tiggesbäumker, K.-H. Meiwes-Broer, Phys. Rev. Lett. 98, 143401 (2007)

    Article  ADS  Google Scholar 

  45. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. X. Truong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truong, N.X., Tiggesbäumker, J. & Meiwes-Broer, KH. Control of chirped pulse trains: a speedway for free-optimization experiments. Appl. Phys. B 105, 293–300 (2011). https://doi.org/10.1007/s00340-011-4694-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4694-x

Keywords

Navigation