Skip to main content
Log in

Monte Carlo simulation of photon transport in a randomly oriented sphere-cylinder scattering medium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A Monte Carlo simulation tool for simulating photon transport in a randomly oriented sphere-cylinder medium has been developed. The simulated medium represents a paper pulp suspension where the constituents are assumed to be mono-disperse micro-spheres, representing dispersed fiber fragments, and infinitely long, straight, randomly oriented cylinders representing fibers. The diameter of the micro-spheres is considered to be about the order of the wavelength and is described by Mie scattering theory. The fiber diameter is considerably larger than the wavelength and the photon scattering is therefore determined by an analytical solution of Maxwell’s equation for scattering at an infinitely long cylinder. By employing a Stokes–Mueller formalism, the software tracks the polarization of the light while propagating through the medium. The effects of varying volume concentrations and sizes of the scattering components on reflection, transmission and polarization of the incident light are investigated. It is shown that not only the size but also the shape of the particles has a big impact on the depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, H. Ma, J. Biomed. Opt. 15, 1083 (2010)

    Google Scholar 

  2. S.A. Prahl, M. Keijzer, S.L. Jacques, A.J. Welch, in SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology (1989)

    Google Scholar 

  3. L. Wang, S. Jacques, L. Zheng, Comput. Methods Programs Biomed. 47, 0169 (1995)

    Article  Google Scholar 

  4. G.W. Kattawar, G.N. Plass, Appl. Opt., 7, (1968)

  5. P. Bruscaglioni, G. Zaccanti, Q. Wei, Appl. Opt. 32, 0740 (1993)

    Google Scholar 

  6. S. Bartel, A. Hielscher, Appl. Opt. 39, 0003 (2000)

    Article  Google Scholar 

  7. J. Ramella-Roman, S. Prahl, S. Jacques, Opt. Express 13, 1094 (2005a)

    Google Scholar 

  8. J. Ramella-Roman, S. Prahl, S. Jacques, Opt. Express 13, 1094 (2005b)

    Google Scholar 

  9. J. Niemi, Online characterization of wood pulp. Ph.D. thesis, school, Luleå University of Techonology (2009)

  10. J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, C. Wahlstrom, Appl. Opt. 34, 0003 (1995)

    Article  Google Scholar 

  11. D. Modric, S. Bolanca, R. Beuc, J. Imaging Sci. Technol. 53, 1062 (2009)

    Article  Google Scholar 

  12. M.Y. Kirillin, A. Priezzhev, J. Hast, R. Myllyla, Quantum Electron. 36, 1063 (2006)

    Google Scholar 

  13. M.Y. Kirillin, E. Alarousu, T. Fabritius, R. Myllyla, A.V. Priezzhev, J. Eur. Opt. Soc., Rapid Publ. 2, 1990 (2007)

    Article  Google Scholar 

  14. K. Green, L. Lamberg, K. Lumme, Appl. Opt. 39, 0003 (2000)

    Article  Google Scholar 

  15. C. Fellers, B. Norman Pappersteknik, Department of Pulp and Paper Chemistry and Technology (3rd edn.) (Royal Institute of Technology, Stockholm, 1996). ISBN 91-7170-741-7

    Google Scholar 

  16. A. Kienle, F. Forster, R. Diebolder, R. Hibst, Phys. Med. Biol. 48, 0031 (2003)

    Article  Google Scholar 

  17. A. Kienle, F. Forster, R. Hibst, Opt. Lett. 29, 0146 (2004)

    Article  Google Scholar 

  18. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, A. Pifferi, Opt. Express 16, 1094 (2008)

    Article  Google Scholar 

  19. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, H. Ma, Opt. Express 17, 1094 (2009)

    Article  Google Scholar 

  20. Z. Zhao, M. Tormanen, R. Myllyla, Meas. Sci. Technol. 17, 0957 (2006)

    Google Scholar 

  21. Z. Zhao, M. Tormanen, R. Myllyla, Cent. Eur. J. Phys. 8, 1895 (2010)

    Article  Google Scholar 

  22. Z. Zhao, M. Tormanen, R. Myllyla, Opt. Appl. 34, 0078 (2004)

    Google Scholar 

  23. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), IBSN 0471293407

    Google Scholar 

  24. A. Kienle, C. Wetzel, A. Bassi, D. Comelli, P. Taroni, A. Pifferi, J. Biomed. Opt. 12, 1083 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Linder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linder, T., Löfqvist, T. Monte Carlo simulation of photon transport in a randomly oriented sphere-cylinder scattering medium. Appl. Phys. B 105, 659–664 (2011). https://doi.org/10.1007/s00340-011-4684-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4684-z

Keywords

Navigation