Abstract
We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.
Similar content being viewed by others
References
V. Backman, M. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, J. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. Crawford, M. Fitzmaurice, S. Kabani, H. Levin, M. Seiler, R. Dasari, I. Itzkan, J. Van Dam, M. Feld, Nature 406 (2000)
V. Tuchin, Optical Biomedical Diagnostics, vol. 2 (Fizmatlit, Moscow, 2007)
R. Gurjar, V. Backman, L. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, M. Feld, Nat. Med. 7, 11 (2001)
V. Backman, Imaging human epithelial properties with polarized light scattering spectroscopy. Ph.D. thesis (2001)
N. Nese, R. Gupta, M. Bui, M. Amin, J. Natl. Compr. Cancer Netw. 7, 1 (2009)
M. Babjuk, Eur. Urol. Suppl. 8 (2009)
T. Kakizoi, Cancer Sci. 97, 9 (2006)
B. Tetu, Mod. Pathol. 22 (2009)
M. Ihnat, K. Kyker, J. Thorpe, S. Shenoy, R. Hurst, Am. J. Pharmacol. Toxicol. 1, 4 (2006)
T. Filbeck, U. Pichlmeier, R. Knuechel, W. Wieland, W. Roessler, Urology 60, 6 (2002)
D. Barocas, P. Clark, Curr. Opin. Oncol. 20, 3 (2008)
E. Cauberg, D. de Bruin, D. Faber, T. van Leeuwen, J. de la Rosette, T. de Reijke, Eur. Urol. 56 (2009)
A. Stenzl, S. Kruck, Expert Rev. Anticancer Ther. 9, 6 (2009)
C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1998)
R. Studinski, I. Vitkin, J. Biomed. Opt. 3, 5 (2000)
J. Gladstone, T. Dale, Philos. Trans. R. Soc. Lond. 153 (1864)
Bang Laboratories, TechNote 100 (Polymer Microspheres) (2010)
A. Bashkatov, E. Genina, V. Kochubey, V. Tuchin, Proc. SPIE 3917 (2000)
H. Ding, J. Lu, K. Jacobs, X.-H. Hu, J. Opt. Soc. Am. A 22, 6 (2005)
E. Hecht, Optics, 4th edn. (Addison-Wesley, Reading, 2002)
H. van Staverent, J. Beeu, J. Ramaekerst, M. Keijzerg, W. Star, Phys. Med. Biol. 39 (1994)
T. Beck, W. Beyer, T. Pongratz, W. Stummer, R. Waidelich, H. Stepp, S. Wagner, R. Baumgartner, in Proc. SPIE–OSA Biomedical Optics, vol. 5138 (SPIE, Bellingham, 2003)
L. Wang, S. Jacques, L. Zheng, Comput. Methods Biomed. 47 (1995)
C. Palmer, N. Ramanujam, Appl. Opt. 5, 45 (2006)
Z. Matuszak, A. Sawow, M. Wasilewska-Radwanska, Pol. J. Med. Phys. Eng. 4, 10 (2004)
M. Quinten, J. Stier, Colloid Polym. Sci. 272 (1995)
H. Kang, J. Kim, Y. Yu, J. Oh, J. Korean Phys. Soc. 55, 5 (2009)
C. Amra, Appl. Opt. 32, 28 (1993)
T. Lehmann, C. Gonner, K. Spitzer, IEEE Trans. Med. Imaging 18, 11 (1999)
M. Póth, T. Szakáll, in 10th Int. Symp. Hungarian Researchers on Computational Intelligence and Informatics (2009)
E. Maeland, IEEE Trans. Med. Imag. 7 (1988)
R. Jones, I. Svable, IEEE Trans. Pattern Anal. Mach. Intell. 16, 6 (1994)
L. Shapiro, G. Stockman, Computer Vision (Prentice-Hall, Upper Saddle River, 2001)
V. Gmurman, I. Berenblut, Fundamentals of Probability Theory and Mathematical Statistics (Elsevier, New York, 1968)
R. Fisher, Statistical Methods for Research Workers, 1st edn. (Oliver & Boyd, Edinburgh, 1925)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kalyagina, N., Loschenov, V., Wolf, D. et al. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall. Appl. Phys. B 105, 631–639 (2011). https://doi.org/10.1007/s00340-011-4678-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-011-4678-x