Skip to main content

Advertisement

Log in

Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Backman, M. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, J. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. Crawford, M. Fitzmaurice, S. Kabani, H. Levin, M. Seiler, R. Dasari, I. Itzkan, J. Van Dam, M. Feld, Nature 406 (2000)

  2. V. Tuchin, Optical Biomedical Diagnostics, vol. 2 (Fizmatlit, Moscow, 2007)

    Google Scholar 

  3. R. Gurjar, V. Backman, L. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, M. Feld, Nat. Med. 7, 11 (2001)

    Article  Google Scholar 

  4. V. Backman, Imaging human epithelial properties with polarized light scattering spectroscopy. Ph.D. thesis (2001)

  5. N. Nese, R. Gupta, M. Bui, M. Amin, J. Natl. Compr. Cancer Netw. 7, 1 (2009)

    Google Scholar 

  6. M. Babjuk, Eur. Urol. Suppl. 8 (2009)

  7. T. Kakizoi, Cancer Sci. 97, 9 (2006)

    Google Scholar 

  8. B. Tetu, Mod. Pathol. 22 (2009)

  9. M. Ihnat, K. Kyker, J. Thorpe, S. Shenoy, R. Hurst, Am. J. Pharmacol. Toxicol. 1, 4 (2006)

    Google Scholar 

  10. T. Filbeck, U. Pichlmeier, R. Knuechel, W. Wieland, W. Roessler, Urology 60, 6 (2002)

    Article  Google Scholar 

  11. D. Barocas, P. Clark, Curr. Opin. Oncol. 20, 3 (2008)

    Article  Google Scholar 

  12. E. Cauberg, D. de Bruin, D. Faber, T. van Leeuwen, J. de la Rosette, T. de Reijke, Eur. Urol. 56 (2009)

  13. A. Stenzl, S. Kruck, Expert Rev. Anticancer Ther. 9, 6 (2009)

    Article  Google Scholar 

  14. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1998)

    Book  Google Scholar 

  15. R. Studinski, I. Vitkin, J. Biomed. Opt. 3, 5 (2000)

    Google Scholar 

  16. J. Gladstone, T. Dale, Philos. Trans. R. Soc. Lond. 153 (1864)

  17. Bang Laboratories, TechNote 100 (Polymer Microspheres) (2010)

  18. A. Bashkatov, E. Genina, V. Kochubey, V. Tuchin, Proc. SPIE 3917 (2000)

  19. H. Ding, J. Lu, K. Jacobs, X.-H. Hu, J. Opt. Soc. Am. A 22, 6 (2005)

    Article  Google Scholar 

  20. E. Hecht, Optics, 4th edn. (Addison-Wesley, Reading, 2002)

    Google Scholar 

  21. H. van Staverent, J. Beeu, J. Ramaekerst, M. Keijzerg, W. Star, Phys. Med. Biol. 39 (1994)

  22. T. Beck, W. Beyer, T. Pongratz, W. Stummer, R. Waidelich, H. Stepp, S. Wagner, R. Baumgartner, in Proc. SPIE–OSA Biomedical Optics, vol. 5138 (SPIE, Bellingham, 2003)

    Google Scholar 

  23. L. Wang, S. Jacques, L. Zheng, Comput. Methods Biomed. 47 (1995)

  24. C. Palmer, N. Ramanujam, Appl. Opt. 5, 45 (2006)

    Google Scholar 

  25. Z. Matuszak, A. Sawow, M. Wasilewska-Radwanska, Pol. J. Med. Phys. Eng. 4, 10 (2004)

    Google Scholar 

  26. M. Quinten, J. Stier, Colloid Polym. Sci. 272 (1995)

  27. H. Kang, J. Kim, Y. Yu, J. Oh, J. Korean Phys. Soc. 55, 5 (2009)

    Article  ADS  Google Scholar 

  28. C. Amra, Appl. Opt. 32, 28 (1993)

    Google Scholar 

  29. T. Lehmann, C. Gonner, K. Spitzer, IEEE Trans. Med. Imaging 18, 11 (1999)

    Article  Google Scholar 

  30. M. Póth, T. Szakáll, in 10th Int. Symp. Hungarian Researchers on Computational Intelligence and Informatics (2009)

    Google Scholar 

  31. E. Maeland, IEEE Trans. Med. Imag. 7 (1988)

  32. R. Jones, I. Svable, IEEE Trans. Pattern Anal. Mach. Intell. 16, 6 (1994)

    Google Scholar 

  33. L. Shapiro, G. Stockman, Computer Vision (Prentice-Hall, Upper Saddle River, 2001)

    Google Scholar 

  34. V. Gmurman, I. Berenblut, Fundamentals of Probability Theory and Mathematical Statistics (Elsevier, New York, 1968)

    Google Scholar 

  35. R. Fisher, Statistical Methods for Research Workers, 1st edn. (Oliver & Boyd, Edinburgh, 1925)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kalyagina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyagina, N., Loschenov, V., Wolf, D. et al. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall. Appl. Phys. B 105, 631–639 (2011). https://doi.org/10.1007/s00340-011-4678-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4678-x

Keywords

Navigation