Applied Physics B

, Volume 105, Issue 3, pp 641–648 | Cite as

Optical spectra analysis for breast cancer diagnostics

  • S. A. Belkov
  • G. G. Kochemasov
  • T. E. LyubynskayaEmail author
  • N. V. Maslov
  • A. S. Nuzhny
  • L. B. Da Silva
  • A. Rubenchik


Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making.

165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology.

Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ∼90% and sensitivity ∼91%.

Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 ‘cancer’ and 29 ‘non-cancer’ cases and demonstrated total separation.


Spectral Curf Learning Sample Wavelet Expansion Average Brightness Total Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Mourant, J. Boyer, A. Hielscher, I.J. Bigio, Opt. Lett. 21, 546 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, Phys. Rev. Lett. 80, 627 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T.M. Johnson, A. Matanock, K. Stetter, J.P. Freyer, J. Biomed. Opt. 5, 131 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    I.J. Bigio, S.G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. Ripley, I.G. Rose, C. Saunders, J. Biomed. Opt. 5, 221 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M.S. Feld, Appl. Opt. 38, 6628 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Belkov, G.G. Kochemasov, S.M. Kulikov, N.V. Maslov, S.V. Bondarenko, N.M. Shakhova, I. Pavlycheva, A. Rubenchik, L. Da Silva, Proc. SPIE 6859, 20 (2008) Google Scholar
  7. 7.
    A. Tikhonov, V. Arsenin, Solutions of Ill-Posed Problems (W.H. Winston, Washington, 1977) zbMATHGoogle Scholar
  8. 8.
    P. Williams, Neural Comput. 7, 117 (1995) CrossRefGoogle Scholar
  9. 9.
    I.J. Bigio, S.G. Bown, Cancer Biol. Ther. 3, 259 (2004) CrossRefGoogle Scholar
  10. 10.
    F.T. Nguyen, A.M. Zysk, J.G. Kotynek, F.J. Bellafiore, K.M. Rowland, P.A. Johnson, J.E. Chaney, S.A. Boppart, Proceedings of SPIE A 6430 (2007) Google Scholar
  11. 11.
    W. Luo, F.T. Nguyen, A.M. Zysk, T.S. Ralston, J. Brockenbrough, D.L. Marks, A.L. Oldenburg, S.A. Boppart, Tech. Cancer Res. Treat. 4, 539 (2005) Google Scholar
  12. 12.
    J.Q. Brown, L.G. Wilke, J. Geradts, S.A. Kennedy, G.M. Palmer, N. Ramanujam, Cancer Res. 69, 2919 (2009) CrossRefGoogle Scholar
  13. 13.
    S.L. Willis, I. Ramzy, Acta Cytol. 39, 64 (1995) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. A. Belkov
    • 1
  • G. G. Kochemasov
    • 1
  • T. E. Lyubynskaya
    • 1
    Email author
  • N. V. Maslov
    • 1
  • A. S. Nuzhny
    • 2
  • L. B. Da Silva
    • 3
  • A. Rubenchik
    • 4
  1. 1.Russian Federal Nuclear Center—VNIIEFSarovRussia
  2. 2.Nuclear Safety Institute of Russian Academy of ScienceMoscowRussia
  3. 3.BioTelligent Inc.LivermoreUSA
  4. 4.LLNLLivermoreUSA

Personalised recommendations