Skip to main content
Log in

Oxygen isotope separation utilizing two-frequency infrared multiphoton dissociation of 2,3-dihydropyran

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Oxygen isotope separation has been examined by utilizing the two-frequency infrared multiphoton dissociation (IRMPD) of 2,3-dihydropyran (DHP). The two-frequency IRMPD reduces the required laser fluences to those lower than the damage threshold of optical windows. For example, dissociation probability of DHP containing 18O (D(18O)) and enrichment factor (S) were obtained to be 1.6×10−3/pulse and 316, respectively, by the simultaneous irradiation with 1052.2 cm−1 photons at 0.45 J/cm2 and 1031.5 cm−1 photons at 1.06 J/cm2. These are comparable with D(18O)=2.2×10−3/pulse and S=391 obtained by the single-frequency irradiation of 1033.5 cm−1 photons at 2.2 J/cm2. Therefore, the production rate of an 18O enriched dissociation product has been increased to four times or more, compared with the single-frequency IRMPD, and this two-frequency method would promise a practical large scale separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zakrzewska-Tranadel, A.G. Chimelewski, N.R. Miljevic, J. Membr. Sci. 113, 337 (1996)

    Article  Google Scholar 

  2. G. Boato, G. Scoles, M.E. Vallauri, IL Nuovo Cimento, XIV(4) (1959)

  3. A.M. Rozen, Teoria Razdelenia Izotopov v Kolonah (Atomizdat, Moscva, 1960)

    Google Scholar 

  4. F. Pop, I. Piciorea, M. Iliescu, M. Culcer, C. Croitoru, I. Stefanescu, Annals of University of Craiova, Electrical Engineering Series (30) (2006)

  5. L.A. Webster, N.H. Wahl, H.C. Urey, J. Chem. Phys. 3, 129 (1935)

    Article  ADS  Google Scholar 

  6. S. Terabe, T. Yashima, N. Tanaka, M. Araki, Anal. Chem. 60, 1673 (1988)

    Article  Google Scholar 

  7. N. Tanaka, M. Araki, J. Am. Chem. Soc. 107, 7780 (1985)

    Article  Google Scholar 

  8. N. Tanaka, K. Hosoya, K. Nomura, T. Yoshimura, T. Ohki, R. Yamaoka, K. Kimura, M. Araki, Nature 341, 727 (1989)

    Article  ADS  Google Scholar 

  9. H.S. Spacil, C.S. Tedman, Nature 222, 662 (1969)

    Article  ADS  Google Scholar 

  10. R.C. Bergman, G.F. Homicz, J.W. Rick, G.L. Wolk, J. Chem. Phys. 78, 1281 (1983)

    Article  ADS  Google Scholar 

  11. S. Mori, H. Akatsuka, M. Suzuki, J. Nucl. Sci. Technol. 38, 850 (2001)

    Article  Google Scholar 

  12. V.V. Vizhin, Yu.N. Molin, A.K. Petrov, A.R. Sorokin, Appl. Phys. 17, 385 (1978)

    Article  ADS  Google Scholar 

  13. T. Majima, K. Sugita, S. Arai, Chem. Phys. Lett. 163, 29 (1989)

    Article  ADS  Google Scholar 

  14. V.B. Laptev, E.A. Ryabov, L.M. Tumanova, Quantum Electron. 22, 607 (1995)

    Article  ADS  Google Scholar 

  15. D. Garcia, P.M. Keehn, J. Am. Chem. Soc. 100, 6111 (1978)

    Article  Google Scholar 

  16. A. Yokoyama, K. Katsumata, H. Ohba, H. Akagi, M. Saeki, K. Yokoyama, J. Phys. Chem. A 112, 6571 (2008)

    Article  Google Scholar 

  17. A. Yokoyama, H. Ohba, M. Hashimoto, K. Katsumata, H. Akagi, T. Ishii, A. Ohya, S. Arai, Appl. Phys. B 79, 883 (2004)

    Article  ADS  Google Scholar 

  18. H. Ohba, H. Akagi, K. Katsumata, M. Hashimoto, A. Yokoyama, Jpn. J. Appl. Phys. 47, 8379 (2008)

    Article  ADS  Google Scholar 

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Inc., Wallingford, 2004)

  20. V.N. Bagratashvili, V.S. Letokhov, A.A. Makarov, E.A. Ryabov, Laser Chem. 4, 171 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Ohba, H. & Yokoyama, A. Oxygen isotope separation utilizing two-frequency infrared multiphoton dissociation of 2,3-dihydropyran. Appl. Phys. B 104, 969–974 (2011). https://doi.org/10.1007/s00340-011-4630-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4630-0

Keywords

Navigation