Skip to main content

Synthesis of nanometric iron oxide films by RPLD and LCVD for thermo–photo sensors


Iron oxide films were deposited on <100> Si substrates by reactive pulsed laser deposition (RPLD) using a KrF laser (248 nm). These films were deposited too by laser (light) chemical vapor deposition (LCVD) using continuous ultraviolet photodiode radiation (360 nm). The deposited films demonstrated semiconducting properties. These films had large thermo-electromotive force (e.m.f.) coefficient (S) and high photosensitivity (F). For films deposited by RPLD the S coefficient varied in the range 0.8–1.65 mV/K at 205–322 K. This coefficient depended on the band gap (E g ) of the semiconductor films, which varied in the range 0.43–0.93 eV. The largest F value found was 44 Vc/W for white light at power density I≅0.006 W/cm2. Using LCVD, iron oxide films were deposited from iron carbonyl vapor. For these films, the S coefficient varied in the range −0.5 to 1.5 mV/K at 110–330 K. The S coefficient depended on E g of the semiconductor films, which varied in the range 0.44–0.51 eV. The largest F value of these films was about 40 Vc/W at the same I≅0.006 W/cm2. Our results showed that RPLD and LCVD can be used to synthesize iron oxide thin films with variable stoichiometry and, consequently, with different values of E g . These films have large S coefficient and high photosensitivity F and therefore can be used as multi-parameter sensors: thermo–photo sensors.

This is a preview of subscription content, access via your institution.


  1. 1.

    A.P. Caricato, A. Luches, F. Romano, S.A. Mulenko, Y.V. Kudryavtsev, N.T. Gorbachuk, C. Fotakis, E.L. Papadopoulou, R. Klini, Appl. Surf. Sci. 254, 1288 (2007)

    ADS  Article  Google Scholar 

  2. 2.

    A.P. Caricato, N.T. Gorbachuk, A.M. Korduban, G. Leggieri, A. Luches, P. Mengucci, S.A. Mulenko, D. Valerini, J. Vac. Sci. Technol. B 28(2), 295 (2010)

    Article  Google Scholar 

  3. 3.

    A.P. Caricato, A. Luches, M. Martino, D. Valerini, Y.V. Kudryavtsev, A.M. Korduban, S.A. Mulenko, N.T. Gorbachuk, J. Optoelectron. Adv. Mater. 12, 427 (2010)

    Google Scholar 

  4. 4.

    S.A. Mulenko, V.P. Mygashko, Appl. Surf. Sci. 252, 4449 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    A.P. Caricato, Y.V. Kudryavtsev, G. Leggiery, A. Luches, S.A. Mulenko, J. Phys. D, Appl. Phys. 40, 4866 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    J. Hermann, A.L. Thomann, C. Boulmer-Leborgne, B. Dubreuil, M.L. De Giorgi, A. Perrone, A. Luches, I.N. Mihailescu, J. Appl. Phys. 77, 2928 (1995)

    ADS  Article  Google Scholar 

  7. 7.

    K.V. Shalimova, Fizica Poluprovodnikov (Energoatomizdat, Moskva, 1985) (in Russian)

    Google Scholar 

  8. 8.

    A.J.M. Kuipers, V.A.M. Brabers, Phys. Rev. B 14, 1401 (1976)

    ADS  Article  Google Scholar 

  9. 9.

    E.I. Rogacheva, S.G. Lyubchenko, M.S. Dresselhaus, Thin Solid Films 476, 391 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    J. Tauc, Foto-termoelectrical Javlenija v Poluprovodnikah (Inostranaja Literatura, Moskva, 1962) (in Russian)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. A. Mulenko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mulenko, S.A., Gorbachuk, N.T. Synthesis of nanometric iron oxide films by RPLD and LCVD for thermo–photo sensors. Appl. Phys. B 105, 517–523 (2011).

Download citation


  • Iron Oxide
  • PbTe
  • Rutherford Backscatter Spectrometry
  • High Photosensitivity
  • Photo Sensor