All-optical ion generation for ion trap loading

Abstract

We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell–Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm2 and 330 mJ/cm2, the atomic beam is composed exclusively of ground-state atoms. For higher fluences ions and excited atoms are generated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    ADS  Article  Google Scholar 

  2. 2.

    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    S.A. Diddams, Th. Udem, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Science 293, 825 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    T. Rosenband, P.O. Schmidt, D.B. Hume, W.M. Itano, T.M. Fortier, J.E. Stalnaker, K. Kim, S.A. Diddams, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Phys. Rev. Lett. 98, 220801 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glückert, M. Enderlein, T. Huber, T. Schätz, Phys. Rev. Lett. 103, 090504 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature 463, 68 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    A. Steane, Appl. Phys. B, Lasers Opt. 64, 623 (1997)

    ADS  Article  Google Scholar 

  10. 10.

    D. Kielpinski, C. Monroe, C. Wineland, Nature 417, 709 (2002)

    ADS  Article  Google Scholar 

  11. 11.

    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006)

    Article  Google Scholar 

  12. 12.

    M. Brownnutt, G. Wilpers, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, J. Mod. Opt. 54, 1607 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, New J. Phys. 6, 95 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    C. Russo, H.G. Barros, A. Stute, F. Dubin, E.S. Phillips, T. Monz, T.E. Northup, C. Becher, T. Salzburger, H. Ritsch, P.O. Schmidt, R. Blatt, Appl. Phys. B 95, 205 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    N. Kjærgaard, L. Hornekær, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000)

    ADS  Article  Google Scholar 

  20. 20.

    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B, Lasers Opt. 73, 861 (2001)

    ADS  Article  Google Scholar 

  21. 21.

    M. Ashfold, F. Claeyssens, G. Fuge, S. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  22. 22.

    R.F. Haglund, Mechanisms of Laser-Induced Desorption and Ablation (Academic Press, San Diego, 1998)

    Google Scholar 

  23. 23.

    R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dante, M. Drewson, Appl. Phys. B, Lasers Opt. 88, 507 (2007)

    ADS  Article  Google Scholar 

  24. 24.

    D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    N.B. Pilling, Phys. Rev. 18, 362 (1921)

    ADS  Article  Google Scholar 

  26. 26.

    N.F. Ramsey, Molecular Beams (Oxford University Press, London, 1963)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Sheridan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheridan, K., Lange, W. & Keller, M. All-optical ion generation for ion trap loading. Appl. Phys. B 104, 755 (2011). https://doi.org/10.1007/s00340-011-4563-7

Download citation

Keywords

  • Ablation Laser
  • Atomic Beam
  • Pulse Laser Ablation
  • Trap Depth
  • Calcium Atom