Skip to main content
Log in

All-optical ion generation for ion trap loading

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell–Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm2 and 330 mJ/cm2, the atomic beam is composed exclusively of ground-state atoms. For higher fluences ions and excited atoms are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  2. H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  3. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  4. T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005)

    Article  ADS  Google Scholar 

  5. S.A. Diddams, Th. Udem, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Science 293, 825 (2001)

    Article  ADS  Google Scholar 

  6. T. Rosenband, P.O. Schmidt, D.B. Hume, W.M. Itano, T.M. Fortier, J.E. Stalnaker, K. Kim, S.A. Diddams, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Phys. Rev. Lett. 98, 220801 (2007)

    Article  ADS  Google Scholar 

  7. H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glückert, M. Enderlein, T. Huber, T. Schätz, Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  8. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature 463, 68 (2010)

    Article  ADS  Google Scholar 

  9. A. Steane, Appl. Phys. B, Lasers Opt. 64, 623 (1997)

    Article  ADS  Google Scholar 

  10. D. Kielpinski, C. Monroe, C. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  11. D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006)

    Article  Google Scholar 

  12. M. Brownnutt, G. Wilpers, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232 (2006)

    Article  ADS  Google Scholar 

  13. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, J. Mod. Opt. 54, 1607 (2007)

    Article  ADS  Google Scholar 

  14. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, New J. Phys. 6, 95 (2004)

    Article  ADS  Google Scholar 

  15. C. Russo, H.G. Barros, A. Stute, F. Dubin, E.S. Phillips, T. Monz, T.E. Northup, C. Becher, T. Salzburger, H. Ritsch, P.O. Schmidt, R. Blatt, Appl. Phys. B 95, 205 (2009)

    Article  ADS  Google Scholar 

  16. R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002)

    Article  ADS  Google Scholar 

  17. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  18. D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004)

    Article  ADS  Google Scholar 

  19. N. Kjærgaard, L. Hornekær, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000)

    Article  ADS  Google Scholar 

  20. S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B, Lasers Opt. 73, 861 (2001)

    Article  ADS  Google Scholar 

  21. M. Ashfold, F. Claeyssens, G. Fuge, S. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  22. R.F. Haglund, Mechanisms of Laser-Induced Desorption and Ablation (Academic Press, San Diego, 1998)

    Google Scholar 

  23. R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dante, M. Drewson, Appl. Phys. B, Lasers Opt. 88, 507 (2007)

    Article  ADS  Google Scholar 

  24. D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007)

    Article  ADS  Google Scholar 

  25. N.B. Pilling, Phys. Rev. 18, 362 (1921)

    Article  ADS  Google Scholar 

  26. N.F. Ramsey, Molecular Beams (Oxford University Press, London, 1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sheridan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheridan, K., Lange, W. & Keller, M. All-optical ion generation for ion trap loading. Appl. Phys. B 104, 755–761 (2011). https://doi.org/10.1007/s00340-011-4563-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4563-7

Keywords

Navigation