Skip to main content
Log in

Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We experimentally investigate the antireflective properties of various silicon (Si) subwavelength grating (SWG) structures using closely-packed silica nanospheres monolayers with different sizes as etch masks and a subsequent inductively coupled plasma (ICP) etching, together with theoretical calculations based on a rigorous coupled wave analysis method. The geometric structure of Si SWGs is optimized by changing the size of nanospheres and ICP etching parameters. The antireflective properties depend strongly on the period, height, and shape of the hexagonally ordered SWG structures, especially correlated with ICP etching parameters. For an optimized Si SWG structure with a rounded cone shape, the reflectance is significantly reduced, indicating a low reflectance of <4.4% over a wide wavelength region of 300–1100 nm. From theoretical analysis, the reflectance of rounded cone-shaped Si SWG structures is minimized with a period of ∼300–350 nm and heights of >750 nm, which is reasonably consistent with the experimental results. The angle-dependent antireflection characteristics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Eisenstein, L.W. Stulz, Appl. Opt. 23, 161 (1984)

    Article  ADS  Google Scholar 

  2. T. Fujibayashi, T. Matsui, M. Kondo, Appl. Phys. Lett. 88, 183508 (2006)

    Article  ADS  Google Scholar 

  3. L.J. Yan, J.K. Sheu, W.C. Wen, T.F. Liao, M.J. Tsai, C.S. Chang, IEEE Photonics Technol. Lett. 20, 1724 (2008)

    Article  ADS  Google Scholar 

  4. D.J. Aiken, Prog. Photovolt., Res. Appl. 8, 563 (2000)

    Article  Google Scholar 

  5. A. Jonsson, A. Roos, E.K. Jonson, Sol. Energy Mater. Sol. Cells 94, 992 (2010)

    Article  Google Scholar 

  6. C. Lee, S.Y. Bae, S. Mobasser, H. Manohara, Nano Lett. 5, 2438 (2005)

    Article  ADS  Google Scholar 

  7. H. Kikuta, H. Toyota, W. Yu, Opt. Rev. 10, 63 (2003)

    Article  Google Scholar 

  8. J.W. Leem, Y.M. Song, Y.T. Lee, J.S. Yu, Appl. Phys. B 99, 695 (2010)

    Article  ADS  Google Scholar 

  9. Y.M. Song, S.J. Jang, J.S. Yu, Y.T. Lee, Small 6, 984 (2010)

    Article  Google Scholar 

  10. S.A. Boden, D.M. Bagnall, Prog. Photovolt., Res. Appl. 18, 195 (2010)

    Article  Google Scholar 

  11. Y. Kanamori, M. Ishimori, K. Hane, IEEE Photonics Technol. Lett. 14, 1064 (2002)

    Article  ADS  Google Scholar 

  12. J.W. Leem, Y.M. Song, Y.T. Lee, J.S. Yu, Appl. Phys. B 100, 891 (2010)

    Article  ADS  Google Scholar 

  13. C.H. Sun, W.L. Min, N.C. Linn, B. Jiang, P. Jing, Appl. Phys. Lett. 91, 231105 (2007)

    Article  ADS  Google Scholar 

  14. Y. Li, J. Zhang, B. Yang, Nano Today 5, 117 (2010)

    Article  Google Scholar 

  15. N.C. Linn, C.H. Sun, B. Jiang, P. Jiang, Appl. Phys. Lett. 91, 111108 (2007)

    Article  ADS  Google Scholar 

  16. V. Canpean, S. Astilean, T. Petrisor Jr., M. Gabor, I. Ciascai, Mater. Lett. 63, 1834 (2009)

    Article  Google Scholar 

  17. W.L. Min, A.P. Betancourt, B. Jiang, P. Jiang, Appl. Phys. Lett. 92, 141109 (2008)

    Article  ADS  Google Scholar 

  18. H. Takato, M. Yamanaka, Y. Hayashi, R. Shimokawa, I. Hide, S. Gohda, F. Nagamine, H. Tsuboi, Jpn. J. Appl. Phys. 31, L1665 (1992)

    Article  ADS  Google Scholar 

  19. M.C. Wei, S.J. Chang, C.Y. Tsia, C.H. Liu, S.C. Chen, Sol. Energy 80, 215 (2006)

    Article  Google Scholar 

  20. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, M. Yamaguchi, Prog. Photovolt., Res. Appl. 15, 415 (2007)

    Article  Google Scholar 

  21. N. Kadakia, S. Naczas, H. Bakhru, M. Huang, Appl. Phys. Lett. 97, 191912 (2010)

    Article  ADS  Google Scholar 

  22. C.W. Kuo, J.Y. Shiu, P. Chen, G.A. Somorjai, J. Phys. Chem. B 107, 9950 (2003)

    Article  Google Scholar 

  23. M.J. Huang, C.R. Yang, Y.C. Chiou, R.T. Lee, Sol. Energy Mater. Sol. Cells 92, 1352 (2008)

    Article  Google Scholar 

  24. K.S. Kim, Y. Roh, IEEE Trans. Nanotechnol. 9, 361 (2010)

    Article  ADS  Google Scholar 

  25. A.W. Xu, J.C. Yu, H.X. Zhang, L.Z. Zhang, D.B. Kuang, Y.P. Fang, Langmuir 18, 9570 (2002)

    Article  Google Scholar 

  26. T.M. Blätter, A. Binkert, M. Zimmermann, M. Textor, J. Vörös, E. Reimhult, Nanotechnology 19, 075301 (2008)

    Article  ADS  Google Scholar 

  27. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  28. A. Takagi, K. Ojima, E. Mikamo, T. Matsumoto, T. Kawai, Appl. Phys. Lett. 90, 043122 (2007)

    Article  ADS  Google Scholar 

  29. C.H. Sun, B. Jiang, P. Jiang, Appl. Phys. Lett. 92, 061112 (2008)

    Article  ADS  Google Scholar 

  30. M.G. Moharam, Proc. SPIE 883, 8 (1988)

    Google Scholar 

  31. P. Lalanne, G.M. Morris, Nanotechnology 8, 53 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, B.D., Leem, J.W. & Yu, J.S. Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface. Appl. Phys. B 105, 335–342 (2011). https://doi.org/10.1007/s00340-011-4541-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4541-0

Keywords

Navigation