Skip to main content
Log in

Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996)

    Google Scholar 

  2. S. Roy, T.R. Meyer, R.P. Lucht, V.M. Belovich, E. Corporan, J.R. Gord, Combust. Flame 138, 273 (2004)

    Article  Google Scholar 

  3. T.R. Meyer, S. Roy, R.P. Lucht, J.R. Gord, Combust. Flame 142, 52 (2005)

    Article  Google Scholar 

  4. S. Roy, J.R. Gord, A.K. Patnaik, Prog. Energy Combust. 36, 280 (2010)

    Article  Google Scholar 

  5. J.R. Gord, T.R. Meyer, S. Roy, Annu. Rev. Anal. Chem. 1, 883 (2008)

    Article  Google Scholar 

  6. R.L. Farrow, P.L. Mattern, L.A. Rahn, Appl. Opt. 21, 3119 (1982)

    Article  ADS  Google Scholar 

  7. M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, Appl. Opt. 24, 1012 (1985)

    Article  ADS  Google Scholar 

  8. W. Kreutner, W. Stricker, T. Just, Appl. Spectrosc. 41, 98 (1987)

    Article  ADS  Google Scholar 

  9. R.R. Antcliff, O. Jarrett Jr., ed. by J.A. Roux, T.D. McCay, Combustion Diagnostics by Non-Intrusive Methods, Progress in Astronautics and Aeronautics, vol. 92 (1984)

    Google Scholar 

  10. S. Roy, W.D. Kulatilaka, D.R. Richardson, R.P. Lucht, J.R. Gord, Opt. Lett. 34, 3857 (2009)

    Article  ADS  Google Scholar 

  11. R.P. Lucht, S. Roy, T.R. Meyer, J.R. Gord, Appl. Phys. Lett. 89, 251112 (2006)

    Article  ADS  Google Scholar 

  12. D. von der Linde, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 26, 954 (1971)

    Article  ADS  Google Scholar 

  13. D.D. Dlott, C.L. Schosser, E.L. Chronister, Chem. Phys. Lett. 90, 386 (1982)

    Article  ADS  Google Scholar 

  14. A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978)

    Article  ADS  Google Scholar 

  15. V. Morozov, S. Mochalov, A. Olenin, V. Tunkin, A. Kouzov, J. Raman Spectrosc. 34, 983 (2003)

    Article  ADS  Google Scholar 

  16. W.D. Kulatilaka, P.S. Hsu, H.U. Stauffer, J.R. Gord, S. Roy, Appl. Phys. Lett. doi:10.1063/1.3483871

  17. H. Graener, A. Laubereau, Opt. Commun. 54, 141 (1985)

    Article  ADS  Google Scholar 

  18. H. Graener, A. Laubereau, J.W. Nibler, Opt. Lett. 9, 165 (1984)

    Article  ADS  Google Scholar 

  19. S. Roy, T.R. Meyer, J.R. Gord, Appl. Phys. Lett. 87, 264103 (2005)

    Article  ADS  Google Scholar 

  20. S. Roy, T.R. Meyer, J.R. Gord, Opt. Lett. 30, 3222 (2005)

    Article  ADS  Google Scholar 

  21. T.R. Meyer, S. Roy, J.R. Gord, Appl. Spectrosc. 61, 1135 (2007)

    Article  ADS  Google Scholar 

  22. T. Seeger, J. Kiefer, A. Leipertz, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Opt. Lett. 34, 3755 (2009)

    Article  ADS  Google Scholar 

  23. T. Seeger, J. Kiefer, Y. Gao, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Opt. Lett. 35, 2040 (2010)

    Article  ADS  Google Scholar 

  24. P.S. Hsu, W.D. Kulatilaka, A.U. Patnaik, T.R. Meyer, J.R. Gord, S. Roy, Exp. Fluids 49, 969 (2010)

    Article  Google Scholar 

  25. R. Leonhardt, W. Holzapfel, W. Zinth, W. Raiser, Chem. Phys. Lett. 133, 373 (1987)

    Article  ADS  Google Scholar 

  26. H. Okamoto, K. Yoshihara, Chem. Phys. Lett. 177, 568 (1991)

    Article  ADS  Google Scholar 

  27. T. Joo, A.C. Albrecht, J. Chem. Phys. 99, 3244 (1993)

    Article  ADS  Google Scholar 

  28. C.C. Hayden, D.W. Chandler, J. Chem. Phys. 103, 10465 (1995)

    Article  ADS  Google Scholar 

  29. M. Schmitt, G. Knopp, A. Materny, W. Kiefer, J. Phys. Chem. A 102, 4059 (1998)

    Article  Google Scholar 

  30. T. Lang, M. Motzkus, H.M. Frey, P. Beaud, J. Chem. Phys. 115, 5418 (2001)

    Article  ADS  Google Scholar 

  31. T. Lang, M. Motzkus, J. Raman Spectrosc. 31, 65 (2000)

    Article  ADS  Google Scholar 

  32. V. Arakcheev, D. Jakovlev, S. Mochalov, V. Morozov, A. Olenin, V. Tunkin, J. Raman Spectrosc. 33, 884 (2002)

    Article  ADS  Google Scholar 

  33. G. Knopp, P. Radi, M. Tulej, T. Gerber, P. Beaud, J. Chem. Phys. 118, 8223 (2003)

    Article  ADS  Google Scholar 

  34. H. Skenderovic, T. Buckup, W. Wohlleben, M. Motzkus, J. Raman Spectrosc. 33, 866 (2002)

    Article  ADS  Google Scholar 

  35. S. Meyer, V. Engel, J. Raman Spectrosc. 31, 33 (2000)

    Article  ADS  Google Scholar 

  36. T. Seibert, M. Schmitt, A. Vierheilig, G. Flachenecker, V. Engel, A. Materny, W. Keifer, J. Raman Spectrosc. 31, 25 (2000)

    Article  ADS  Google Scholar 

  37. V.V. Lozovoy, B.I. Grimberg, E.J. Brown, I. Pastirk, M. Dantus, J. Raman Spectrosc. 31, 41 (2000)

    Article  ADS  Google Scholar 

  38. G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, T. Gerber, J. Raman Spectrosc. 34, 989 (2003)

    Article  ADS  Google Scholar 

  39. D. Oron, N. Dudovich, D. Yelin, Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002)

    Article  ADS  Google Scholar 

  40. D. Oron, N. Dudovich, D. Yelin, Y. Silbergerg, Phys. Rev. A 65, 043408 (2002)

    Article  ADS  Google Scholar 

  41. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J.R. Gord, Appl. Phys. Lett. 95, 074102 (2009)

    Article  ADS  Google Scholar 

  42. P.J. Wrzesinski, D. Pestov, V.V. Lozovoy, B. Xu, S. Roy, J.R. Gord, M. Dantus, J. Raman Spectrosc. (2010). doi:10.1002/jrs.2709

  43. S. Roy, P.J. Wrzesinski, D. Pestov, M. Dantus, J.R. Gord, J. Raman Spectrosc. (2010). doi:10.1002/jrs.2587

  44. H. Li, D.A. Harris, B. Xu, P.J. Wrzesinski, V.V. Lozovoy, M. Dantus, Appl. Opt. 48, B17 (2009)

    Article  ADS  Google Scholar 

  45. T. Lang, K.-L. Kompa, M. Motzkus, Chem. Phys. Lett. 310, 65 (1999)

    Article  ADS  Google Scholar 

  46. P. Beaud, H.-M. Frey, T. Lang, M. Motzkus, Chem. Phys. Lett. 344, 407 (2001)

    Article  ADS  Google Scholar 

  47. S. Roy, P.J. Kinnius, R.P. Lucht, J.R. Gord, Opt. Commun. 281, 319 (2008)

    Article  ADS  Google Scholar 

  48. S. Roy, D.R. Richardson, P.J. Kinnius, R.P. Lucht, J.R. Gord, Appl. Phys. Lett. 94, 144101 (2009)

    Article  ADS  Google Scholar 

  49. R.P. Lucht, P.J. Kinnius, S. Roy, J.R. Gord, J. Chem. Phys. 127, 044316 (2007)

    Article  ADS  Google Scholar 

  50. T. Lang, M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002)

    Article  ADS  Google Scholar 

  51. A.M. Weiner, Ultrafast Optics (Wiley, New York, 2009)

    Book  Google Scholar 

  52. D. Romanov, A. Fillin, R. Compton, R. Levis, Opt. Lett. 32, 3161 (2007)

    Article  ADS  Google Scholar 

  53. R.E. Palmer, Sandia National Laboratories Report No. SAND89-8206 (1989)

  54. N.M. Laurendeau, Statistical Thermodynamics (Cambridge University Press, New York, 2005)

    MATH  Google Scholar 

  55. L.A. Rahn, R.E. Palmer, J. Opt. Soc. B 3, 1164 (1986)

    Article  ADS  Google Scholar 

  56. K.V. Price, R.M. Storn, J.A. Lampinen, Diverential Evolution (Springer, Berlin, 2005)

    Google Scholar 

  57. R.D. Hancock, K.E. Bertagnolli, R.P. Lucht, Combust. Flame 109, 323 (1997)

    Article  Google Scholar 

  58. D.R. Richardson, R.P. Lucht, S. Roy, W.D. Kulatilaka, J.R. Gord, Proc. Combust. Inst. doi:10.1016/j.proci.2010.05.060

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Lucht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, D.R., Lucht, R.P., Kulatilaka, W.D. et al. Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry. Appl. Phys. B 104, 699–714 (2011). https://doi.org/10.1007/s00340-011-4489-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4489-0

Keywords

Navigation