Skip to main content
Log in

Kinetics of I2 and HI photodissociation with implications in flame diagnostics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper investigates the application of iodine (I2) tracer in reactive flows to image the concentration filed by using photodissociation spectroscopy (PDS). The PDS technique first uses a short laser pulse to completely photodissociate iodine-containing species into iodine atoms, and then uses a second laser pulse to image the iodine atoms. Due to the completeness and rapidity of the photodissociation (PD), the concentration of I atoms after PD represents that of the iodine element seeded into the flow, which forms a conserved scalar and can be used to image the concentration field. The feasibility of the PDS technique is evaluated in three steps. First, a multi-level kinetic model was developed to capture the major physics relevant to the PDS technique. Second, controlled experiments were conducted to validate the multi-level kinetic model. Third, the validated model was applied to evaluate the applicable range and accuracy of the PDS technique in representative hydrocarbon flames. The results suggest a simple approach to implement the PDS technique using I2 seeding in flames, which can provide good accuracy across a wide range of mixture fractions and strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, New York, 1996)

    Google Scholar 

  2. B. Hiller, R.K. Hanson, Exp. Fluids 10, 1 (1990)

    Article  Google Scholar 

  3. R.J. Exton, R.J. Balla, B. Shirinzadeh, M.E. Hillard, G.J. Brauckmann, Exp. Fluids 26, 335 (1999)

    Article  Google Scholar 

  4. D.G. Fletcher, J.C. McDaniel, Opt. Lett. 12, 16 (1987)

    Article  ADS  Google Scholar 

  5. Y. Zhao, C.N. Tong, L. Ma, Appl. Spectrosc. 63, 199 (2009)

    Article  ADS  Google Scholar 

  6. Y. Zhao, C.N. Tong, L. Ma, Appl. Spectrosc. 64, 377 (2010)

    Article  ADS  Google Scholar 

  7. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978)

    Google Scholar 

  8. J.J. Tiee, M.J. Ferris, G.W. Loge, F.B. Wample, Chem. Phys. Lett. 96, 422 (1983)

    Article  ADS  Google Scholar 

  9. V. Babushok, T. Noto, D.R.F. Burgess, A. Hamins, W. Tsang, Combust. Flame 107, 351 (1996)

    Article  Google Scholar 

  10. A. McIlroy, L.K. Johnson, Combust. Sci. Technol. 116, 31 (1996)

    Article  Google Scholar 

  11. C. Luo, B.Z. Dlugogorski, E.M. Kennedy, Fire Technol. 44, 221 (2008)

    Article  Google Scholar 

  12. R.S. Mulliken, J. Chem. Phys. 55, 288 (1971)

    Article  ADS  Google Scholar 

  13. W.A. DeJong, L. Visscher, W.C. Nieuwpoort, J. Chem. Phys. 107, 9046 (1997)

    Article  ADS  Google Scholar 

  14. R.D. Clear, K.R. Wilson, J. Mol. Spectrosc. 47, 39 (1973)

    Article  ADS  Google Scholar 

  15. H.J. Hwang, M.A. Elsayed, J. Phys. Chem. 95, 8044 (1991)

    Article  Google Scholar 

  16. D.J. Gendron, J.W. Hepburn, J. Chem. Phys. 109, 7205 (1998)

    Article  ADS  Google Scholar 

  17. S.R. Langford, P.M. Regan, A. Orr-Ewing, M.N.R. Ashfold, Chem. Phys. 231, 245 (1998)

    Article  Google Scholar 

  18. P.M. Regan, D. Ascenzi, C. Clementi, M.N.R. Ashfold, A.J. Orr-Ewing, Chem. Phys. Lett. 315, 187 (1999)

    Article  ADS  Google Scholar 

  19. T. Kitsopoulos, M.A. Buntine, D.P. Baldwin, R.N. Zare, D.W. Chandler, Proc. SPIE 1858, 2 (1993)

    Article  ADS  Google Scholar 

  20. A.B. Alekseyev, H. Liebermann, D.B. Kokh, R.J. Buenker, J. Chem. Phys. 113, 6174 (2000)

    Article  ADS  Google Scholar 

  21. R.J. Le Roy, G.T. Kraemer, S. Manzhos, J. Chem. Phys. 117, 9353 (2002)

    Article  ADS  Google Scholar 

  22. R.S. Mulliken, J. Chem. Phys. 8, 14 (1940)

    Google Scholar 

  23. A.B. Alekseyev, H.P. Liebermann, R.J. Buenker, J. Chem. Phys. 126, 234102 (2007)

    Article  ADS  Google Scholar 

  24. J.J. Bannister, H.J. Baker, T.A. King W.G. McNaught, Phys. Rev. Lett. 44, 1062 (1980)

    Article  ADS  Google Scholar 

  25. A.I. Chichinin, J. Phys. Chem. Ref. Data 35, 869 (2006)

    Article  ADS  Google Scholar 

  26. D.L. Carroll, AIAA J. 34, 338 (1996)

    Article  ADS  Google Scholar 

  27. G. Hancock, G. Richmond, G.A.D. Ritchie, S. Taylor, Phys. Chem. Chem. Phys. 11, 6415 (2009)

    Article  Google Scholar 

  28. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-MECH 3.0, http://www.me.berkeley.edu/gri_mech/

  29. A. Bourig, D. Thévenin, J.-P. Martin, G. Janiga, K. Zähringer, Proc. Combust. Inst. 32, 3171 (2009)

    Article  Google Scholar 

  30. A.L. Kaledin, M.C. Heaven, K. Morokuma, J. Chem. Phys. 114, 215 (2001)

    Article  ADS  Google Scholar 

  31. A.B. Alekseyev, H.P. Liebermann, R.J. Buenker, J. Chem. Phys. 126, 234103 (2007)

    Article  ADS  Google Scholar 

  32. A.R. Masri, R.W. Dibble, R.S. Barlow, Prog. Energy Combust. Sci. 22, 307 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Tong, C. & Ma, L. Kinetics of I2 and HI photodissociation with implications in flame diagnostics. Appl. Phys. B 104, 689–698 (2011). https://doi.org/10.1007/s00340-011-4436-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4436-0

Keywords

Navigation