Skip to main content
Log in

Stimulated Raman scattering in natural crystals of SrSO4, BaSO4 and PbSO4: High-order Stokes and anti-Stokes generation with single-wavelength UV, visible, and near-IR excitation, as well as cascaded up-conversion nonlinear χ (3)χ (3) lasing effects under dual-wavelength picosecond collinear coherent pumping

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Orthorhombic crystals of SrSO4, BaSO4, and PbSO4, known as natural crystals celestine, barite, and anglesite, were found to be attractive χ (3)-active nonlinear optical materials. High-order Stokes and anti-Stokes picosecond generation that spans almost two octaves has been recorded with single-wavelength laser excitation in the UV, visible, and near-IR ranges. All recorded Raman induced lasing components were identified and attributed to the SRS-promoting vibration modes of the studied crystals (ω SRS≈999 cm−1 for SrSO4,ω SRS≈985 cm−1 for BaSO4 and ω SRS≈977 cm−1 for PbSO4). Under dual-wavelength (λ f1=1.06415 μm + λ f2=0.53207 μm) collinear coherent picosecond pumping several new manifestations of cascaded χ (3)χ (3) nonlinear up-conversion lasing effects were observed in BaSO4 and SrSO4 crystals. We classify all three studied sulfate crystals as promising SRS-active materials for Raman laser frequency converters and as efficient χ (3)-crystals that efficiently generate Stokes and anti-Stokes frequency combs, which can enable experiments of ultra-short pulse syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kaminskii, Laser Photon Rev. 1, 93 (2007)

    Article  Google Scholar 

  2. J.A. Piper, H.M. Pask, IEEE J. Sel. Top. Quantum Electron. 13, 692 (2007)

    Article  Google Scholar 

  3. P. Franz, P. Egger, J. Hulliger, J. Findeisen, A.A. Kaminskii, H.J. Eichler, Phys. Status Solidi A 210, R7 (1998)

    Article  ADS  Google Scholar 

  4. J. Hulliger, A.A. Kaminskii, H.J. Eichler, Adv. Funct. Mater. 11, 243 (2001)

    Article  Google Scholar 

  5. L. Bohatý, P. Becker, H.J. Eichler, J. Hanuza, M. Maczka, K. Takaichi, K. Ueda, A.A. Kaminskii, Laser Phys. 15, 1509 (2005)

    Google Scholar 

  6. A.A. Kaminskii, E. Haussühl, S. Haussühl, H.J. Eichler, K. Ueda, J. Hanuza, K. Takaichi, H. Rhee, G.M.A. Gad, Laser Phys. Lett. 1, 205 (2004)

    Article  ADS  Google Scholar 

  7. G.M.A. Gad, A.A. Kaminskii, H.J. Eichler, J. Pickardt, Phys. Status Solidi A 193, R10 (2002)

    Article  ADS  Google Scholar 

  8. A.A. Kaminskii, L. Bohatý, P. Becker, R. Kleinschrodt, H.J. Eichler, H. Rhee, K. Ueda, A. Shirakawa, V.V. Koltashev, Laser Phys. Lett. 7, 743 (2010)

    Article  ADS  Google Scholar 

  9. G. Landsberg, L. Mandelstam, Naturwissenschaften 16, 557 (1928)

    Article  Google Scholar 

  10. Gr. Landsberg, L. Mandelstam, Z. Phys. 50, 769 (1928)

    Article  ADS  Google Scholar 

  11. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  12. G. Eckhardt, D.P. Bortfeld, M. Geller, Appl. Phys. Lett. 3, 137 (1963)

    Article  ADS  Google Scholar 

  13. A.A. Kaminskii, L. Bohatý, P. Becker, H.J. Eichler, H. Rhee, Phys. Usp. 51, 899 (2008)

    Article  ADS  Google Scholar 

  14. A.A. Kaminskii, L. Bohatý, P. Becker, H.J. Eichler, H. Rhee, Laser Phys. Lett. 7, 142 (2010)

    Article  ADS  Google Scholar 

  15. W.D. Johnston, I.P. Kaminow, J.G. Bergman, Appl. Phys. Lett. 13, 190 (1968)

    Article  ADS  Google Scholar 

  16. R.W. Terhune, P.D. Maker, C.M. Savage, Phys. Rev. Lett. 8, 404 (1962)

    Article  ADS  Google Scholar 

  17. B.P. Stoicheff, Phys. Lett. 7, 186 (1963)

    Article  ADS  Google Scholar 

  18. R. Chiao, B.P. Stoicheff, Phys. Rev. Lett. 12, 290 (1964)

    Article  ADS  Google Scholar 

  19. A. Penzkofer, F. Ossig, P. Qui, Appl. Phys. B 47, 71 (1988)

    Article  ADS  Google Scholar 

  20. J.A. Giordmain, W. Kaiser, Phys. Rev. 144, 676 (1966)

    Article  ADS  Google Scholar 

  21. P.D. Maker, R.W. Terhune, C.M. Savage, in Proc. Third Int. Congr. Quant. Electronics, ed. by P. Grivet, N. Bloembergen (Columbia University Press, New York, 1964)

    Google Scholar 

  22. V.G. Tunkin, T. Usmanov, V.A. Shakirov, Sov. J. Quantum Electron. 2, 487 (1973)

    Article  ADS  Google Scholar 

  23. O. Muller, R. Roy, The Major Ternary Structural Families (Springer, Berlin, 1974)

    Google Scholar 

  24. Inorganic Crystal Structure Database (ICSD for WWW). Fachinformationszentrum (FIZ) Karlsruhe (2010)

  25. R.W. James, W.A. Wood, Proc. R. Soc. A 109, 598 (1925)

    Article  ADS  Google Scholar 

  26. W. Basche, H. Mark, Z. Kristallogr. 64, 1 (1926)

    Google Scholar 

  27. K. Sahl, Beitr. Miner. Petrogr. 9, 111 (1963)

    Article  Google Scholar 

  28. D. Garske, D.R. Peacor, Z. Kristallogr. 121, 204 (1965)

    Article  Google Scholar 

  29. A.A. Colville, K. Staudhammer, Am. Mineral. 52, 1877 (1967)

    Google Scholar 

  30. F.C. Hawthorne, R.B. Ferguson, Can. Mineral. 13, 181 (1975)

    Google Scholar 

  31. R.J. Hill, Can. Mineral. 15, 522 (1977)

    Google Scholar 

  32. M. Miyake, I. Minato, H. Morikawa, S.-I. Iwai, Am. Mineral. 63, 506 (1978)

    Google Scholar 

  33. R.J. Hill, J. Appl. Crystallogr. 25, 589 (1992)

    Article  Google Scholar 

  34. S.D. Jacobsen, J.R. Smyth, R.J. Swope, R.T. Downs, Can. Mineral. 36, 1953 (1998)

    Google Scholar 

  35. K. Burger, D. Cox, R. Papoular, W. Prandl, J. Appl. Crystallogr. 31, 789 (1998)

    Article  Google Scholar 

  36. J. Johnston, J. Am. Chem. Soc. 36, 16 (1914)

    Article  Google Scholar 

  37. C.W. Blount, Am. Mineral. 59, 1209 (1974)

    Google Scholar 

  38. H. Waldeck, Krist. Tech. 4, K1 (1969)

    Article  Google Scholar 

  39. W.W. Moses, S.E. Derenzo, P.J. Shlichta, IEEE Trans. Nucl. Sci. 39, 1190 (1992)

    Article  ADS  Google Scholar 

  40. B.I. Zadneprovski, I.A. Kamenskikh, V.N. Kolobanov, V.V. Mikhailin, I.N. Shpinkov, M. Kirm, Int. J. Inorg. Mater. 40, 735 (2004)

    Google Scholar 

  41. A.R. Patel, H.L. Bhat, J. Cryst. Growth 12, 288 (1972)

    Article  ADS  Google Scholar 

  42. G. Brouwer, G.M. van Rosmalen, P. Bennema, J. Cryst. Growth 23, 228 (1974)

    Article  ADS  Google Scholar 

  43. J.G. Zhang, J.C. Lund, L. Cirignano, K.S. Shah, M.R. Squillante, W.W. Moses, IEEE Trans. Nucl. Sci. 41, 669 (1994)

    Article  ADS  Google Scholar 

  44. A.R. Patel, H.L. Bhat, J. Cryst. Growth 11, 166 (1971)

    Article  ADS  Google Scholar 

  45. A.R. Patel, J. Koshy, J. Cryst. Growth 2, 128 (1968)

    Article  ADS  Google Scholar 

  46. A.R. Patel, H.L. Bhat, J. Cryst. Growth 8, 153 (1971)

    Article  ADS  Google Scholar 

  47. A. Packter, B.N. Roy, Krist. Tech. 6, 39 (1971)

    Article  Google Scholar 

  48. J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nicholls, Handbook of Mineralogy (Mineral Data Publishing, Tucson, 1990)

    Google Scholar 

  49. S. Haussühl, Z. Kristallogr. 192, 137 (1990)

    Article  Google Scholar 

  50. R.F.S. Hearmon, Adv. Phys. 5, 323 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  51. P. Dawson, M.M. Hargreave, G.R. Wilkinson, Spectrochim. Acta A 33, 83 (1977)

    Article  ADS  Google Scholar 

  52. J.J. Wylde, G.C. Allen, I.R. Collins, Appl. Spectrosc. 55, 1155 (2001)

    Article  ADS  Google Scholar 

  53. J.T. Kloprogge, H. Ruan, L.V. Duong, R.L. Frost, Neth. J. Geosci. 80, 41 (2001)

    Google Scholar 

  54. D. Stoilova, M. Georgiev, D. Marinova, J. Univ. Chem. Technol. Metall. 40, 239 (2005)

    Google Scholar 

  55. A.A. Kaminskii, Sov. Phys. JETP 24, 33 (1967)

    ADS  Google Scholar 

  56. A.A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, Berlin, 1980). (Second edition 1990)

    Google Scholar 

  57. T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)

    Article  ADS  Google Scholar 

  58. W. Kaiser, M. Maier, in Laser Handbook, page 1077, volume, ed. by F.T. Arecchi, E.O. Schultz-Dubois (North-Holland, Amsterdam, 1972), p. 2

    Google Scholar 

  59. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  60. A.A. Kaminskii, C.L. McCray, H.R. Lee, S.W. Lee, D.A. Temple, T.H. Chyba, W.D. Marsh, J.C. Barnes, A.N. Annanenkov, V.D. Legun, H.J. Eichler, G.M.A. Gad, K. Ueda, Opt. Commun. 183, 277 (2000)

    Article  ADS  Google Scholar 

  61. P.M. Nicolić, P.M. Dimitrijević, M. Sekulić, R. Kostić, S.M. Stojilković, Czechoslov. J. Phys. B 36, 1063 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kaminskii, L. Bohatý or P. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminskii, A.A., Bohatý, L., Becker, P. et al. Stimulated Raman scattering in natural crystals of SrSO4, BaSO4 and PbSO4: High-order Stokes and anti-Stokes generation with single-wavelength UV, visible, and near-IR excitation, as well as cascaded up-conversion nonlinear χ (3)χ (3) lasing effects under dual-wavelength picosecond collinear coherent pumping. Appl. Phys. B 105, 363–378 (2011). https://doi.org/10.1007/s00340-011-4388-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4388-4

Keywords

Navigation