Applied Physics B

, Volume 102, Issue 4, pp 917–935 | Cite as

Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: design, setup and performance

  • J. Löhring
  • A. Meissner
  • D. Hoffmann
  • A. Fix
  • G. Ehret
  • M. Alpers
Open Access
Article

Abstract

A diode-pumped Q-switched and injection-seeded single-frequency laser, generating tunable laser radiation at 935 nm, is presented. Using Nd:YGG (Y3Ga5O12) as the active medium, the laser that was developed to serve as a transmitter for water–vapor lidar measurements. The configuration consists of a stable resonator in rod geometry that is injection seeded by a narrowband diode laser and stabilized by the ramp-and-fire technique. Energy scaling was done in a power amplifier in slab geometry. Both oscillator and amplifier crystal were diode pumped at 806 nm. More than 30 mJ pulse energy at 100 Hz repetition rate with a beam propagation factor of M2<1.4 and pulse duration of 52 ns in single-frequency mode were generated. To our knowledge this is the first direct generation of 935 nm Q-switched pulses from Nd:YGG suitable for water–vapor measurements. The reported results show great promise of this laser in applications where high efficiency and reduced complexity is indispensable, such as for spaceborne or airborne water–vapor lidar instruments.

References

  1. 1.
    N.P. Barnes, Opt. Mat. 27, 1653 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    R.M. Schotland, in Proc. Fourth Symp. Remote Sens. Environ., Ann Arbor, Michigan (ERIM, Michigan, 1966), p. 273 Google Scholar
  3. 3.
    S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007) Google Scholar
  4. 4.
    É. Gérard, D.G.H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, P. Di Girolamo, Bull. Am. Meteorol. Soc. 85, 237 (2004) CrossRefGoogle Scholar
  5. 5.
    E.V. Browell, S. Ismail, W.B. Grant, Appl. Phys. B 67, 399 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    A. Helière, J.-L. Bézy, P. Bensi, P. Ingmann, in Proc. SPIE Int. Soc. Opt. Eng., vol. 4881 ( 2003), p. 24 Google Scholar
  7. 7.
    P. Di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, C. Kiemle, ESA SP 561, 957 (2004) ADSGoogle Scholar
  8. 8.
    P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, G. Ehret, Remote Sens. Environ. 112, 1552 (2008) CrossRefGoogle Scholar
  9. 9.
    ESA, Report for assessment: WALES–water vapour lidar experiment in space, ESA SP 1257 (2) (2001) Google Scholar
  10. 10.
    B.M. Walsh, N.P. Barnes, R.L. Hutcheson, R.W. Equall, B. Di Bartolo, J. Opt. Soc. Am. B 15, 2794 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    N.P. Barnes, B.M. Walsh, R.L. Hutcheson, Adv. Solid State Laser 1, 522 (1996) Google Scholar
  12. 12.
    B.M. Walsh, N.P. Barnes, R.L. Hutcheson, R.W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    R. Treichel, C. Czeranowsky, B. Ileri, K. Petermann, G. Huber, Eur. Space Agency, ESA SP 554, 639 (2004) ADSGoogle Scholar
  14. 14.
    S.G.P. Strohmaier, H.J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, G. Huber, Opt. Commun. 275, 170 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    F. Kallmeyer, M. Dziedzina, X. Wang, H.J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, G. Huber, Appl. Phys. B 89, 305 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Z. Lin, X. Wang, F. Kallmeyer, H.J. Eichler, C. Gao, Opt. Express 18, 6131 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    T.J. Axenson, N.P. Barnes, D.J. Reichle, E.E. Köhler, J. Opt. Soc. Am. B 19, 1535 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    Q. Li, B. Feng, Z. Wei, D. Zhang, D. Li, Z. Zhang, H. Zhang, J. Wang, Opt. Lett. 33, 261 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Q. Li, B. Feng, D. Zhang, Z. Zhang, H. Zhang, J. Wang, Appl. Opt. 48, 1898 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Opt. Express. 17, 12230 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J. Löhring, A. Meissner, V. Morasch, P. Becker, W. Heddrich, D. Hoffmann, Proc. SPIE 7193, 71931Y (2009) CrossRefGoogle Scholar
  22. 22.
    G.A. Slack, D.W. Oliver, Phys. Rev. B 5, 3370 (1972) ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Giesting, A.M. Hofmeister, Phys. Rev. B 65, 144305 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    K. Petermann, Private communication (2006) Google Scholar
  25. 25.
    R. Penndorf, J. Opt. Soc. Am. 47, 176 (1957) ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Kaminskii, Laser Crystals (Springer, Berlin/Heidelberg, 1990) Google Scholar
  27. 27.
    J. Löhring, K. Nicklaus, N. Kujath, D. Hoffmann, Proc. SPIE 6451, 64510I (2007) CrossRefGoogle Scholar
  28. 28.
    W. Koechner, Solid-State Laser Engineering (Springer, Berlin/Heidelberg, 2006) Google Scholar
  29. 29.
    J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, H.-D. Hoffmann, R. Treichel, C. Wührer, P. Zeller, Proc. SPIE 6871, 687109 (2008) CrossRefGoogle Scholar
  30. 30.
    V. Magni, Appl. Opt. 25, 107 (1986) ADSCrossRefGoogle Scholar
  31. 31.
    V. Evtuhov, A.E. Siegman, Appl. Opt. 4, 142 (1965) ADSCrossRefGoogle Scholar
  32. 32.
    S.W. Henderson, E.H. Yuen, E.S. Fry, Opt. Lett. 11, 715 (1986) ADSCrossRefGoogle Scholar
  33. 33.
    K. Nicklaus, V. Morasch, M. Höfer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, Proc. SPIE 6451, 64511L (2007) CrossRefGoogle Scholar
  34. 34.
    J.J. Degnan, IEEE J. Quantum Electron. 25, 214 (1989) ADSCrossRefGoogle Scholar
  35. 35.
    J.J. Degnan, D.B. Coyle, R.B. Kay, IEEE J. Quantum Electron. 34, 887 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    L.M. Frantz, J.S. Nodvik, Appl. Phys. 34, 2346 (1963) CrossRefGoogle Scholar
  37. 37.
    D. Findlay, R.A. Clay, Phys. Lett. 20, 277 (1966) ADSCrossRefGoogle Scholar
  38. 38.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L.R. Brown, V. Boudon, J.-P. Champion, K.V. Chance, L.H. Coudert, V. Dana, M.V. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, N. Lacome, J.-Y. Mandin, S.T. Massie, S. Mikhailenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, C.P. Rinsland, M. Šimečková, M.A.H. Smith, S. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Van der Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    A. Fix, G. Ehret, J. Löhring, D. Hoffmann, M. Alpers, Appl. Phys. B (2010). doi: 10.1007/s00340-010-4310-5 Google Scholar
  40. 40.
    M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, G. Ehret, Appl. Phys. B 96, 201 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    F. Kallmeyer, A. Hermerschmidt, H.J. Eichler, H.H. Klingenberg, S. Nikolov, IEEE ASSP Mag. 98, 718 (2005) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • J. Löhring
    • 1
  • A. Meissner
    • 1
  • D. Hoffmann
    • 1
  • A. Fix
    • 2
  • G. Ehret
    • 2
  • M. Alpers
    • 3
  1. 1.Fraunhofer-Institut für Lasertechnik (ILT)AachenGermany
  2. 2.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR)OberpfaffenhofenGermany
  3. 3.Raumfahrt-Agentur, Erdbeobachtung, Bonn-OberkasselDeutsches Zentrum für Luft- und Raumfahrt (DLR)BonnGermany

Personalised recommendations