Skip to main content
Log in

High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baum, P.J. Scully, W. Perrie, D. Jones, R. Issac, D.A. Jaroszynski, Opt. Lett. 33, 651 (2008)

    Article  ADS  Google Scholar 

  2. A. Baum, P.J. Scully, M. Basanta, C.L. Paul Thomas, P.R. Fielden, N.J. Goddard, W. Perrie, P.R. Chalker, Opt. Lett. 32, 190 (2007)

    Article  ADS  Google Scholar 

  3. H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. Gong, J. Opt. A, Pure Appl. Opt. 6, 787 (2004)

    Article  ADS  Google Scholar 

  4. A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Opt. Lett. 29, 1840 (2004)

    Article  ADS  Google Scholar 

  5. K. Yamasaki, S. Juodkazis, M. Watanabe, H.B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 76, 1000 (2000)

    Article  ADS  Google Scholar 

  6. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, K. Itoh, Opt. Express 14, 291 (2006)

    Article  ADS  Google Scholar 

  7. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, J. Nishii, Jpn. J. Appl. Phys. 45, L765 (2006)

    Article  ADS  Google Scholar 

  8. C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, J. Appl. Phys. 98, 013517/1-5 (2005)

    Article  ADS  Google Scholar 

  9. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 031101 (2005)

    Article  ADS  Google Scholar 

  10. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 255, 2284 (2008)

    Article  ADS  Google Scholar 

  11. Z. Kuang, W. Perrie, D. Liu, S. Edwardson, J. Cheng, G. Dearden, K. Watkins, Appl. Surf. Sci. 255, 9040 (2009)

    Article  ADS  Google Scholar 

  12. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I.V. Hertel, R. Stoian, Opt. Express 17, 3531 (2009)

    Article  ADS  Google Scholar 

  13. F. He, H. Sun, M. Huang, J. Xu, Y. Liao, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Appl. Phys. A 97, 853 (2009)

    Article  ADS  Google Scholar 

  14. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M.J. Padgett, J. Cooper, Z. Laczik, Opt. Express 12, 220 (2004)

    Article  ADS  Google Scholar 

  15. J.E. Curtis, C.H.J. Schmitz, J.P. Spatz, Opt. Lett. 30, 2086 (2005)

    Article  ADS  Google Scholar 

  16. P.G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, Appl. Phys. Lett. 90, 151120 (2007)

    Article  ADS  Google Scholar 

  17. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, H. Misawa, Appl. Phys. A 3, 561 (2001)

    Article  ADS  Google Scholar 

  18. W. Watanabe, Laser Phys. 19, 342 (2009)

    Article  ADS  Google Scholar 

  19. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  20. I.V. Ciapurin, L.B. Glebov, V.I. Smirnov, Proc. SPIE 5742, 183 (2005)

    Article  ADS  Google Scholar 

  21. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itch, H. Mochizuki, W. Watanabe, Appl. Phys. Lett. 94, 241122 (2009)

    Article  ADS  Google Scholar 

  22. A. Baum, P.J. Scully, W. Perrie, D. Liu, V. Lucarini, J. Opt. Soc. Am. B 27, 107 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Perrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Kuang, Z., Perrie, W. et al. High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl. Phys. B 101, 817–823 (2010). https://doi.org/10.1007/s00340-010-4205-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4205-5

Keywords

Navigation