Ozone concentration-monitoring photoacoustic system based on a frequency-quadrupled Nd:YAG laser

Abstract

A novel type of system based on a frequency-quadrupled Nd:YAG laser light source at 266 nm and a dual-cell photoacoustic detection unit was developed, and its applicability for ozone-concentration measurement with a minimum detectable ozone concentration of about 100 pptV was demonstrated. The instrument was calibrated against an ozone generator, and it was installed at a regional environmental monitoring station to be operated in parallel with a commercial UV-absorption photometry based ozone-monitoring instrument. While good agreement between the readings of the two systems was found, the photoacoustic system outperformed its optical absorption based counterpart as far as minimum detectable concentration and measurement accuracy is concerned.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Sonnemann, Akademie Verlag GmbH, Berlin, p. 263 (1991)

  2. 2.

    R. Knake, P.C. Hauser, Anal. Chim. Acta 459, 199 (2002)

    Article  Google Scholar 

  3. 3.

    M.S. Shumate, R.T. Menzies, W.B. Grant, D.S. McDougal, Appl. Opt. 20, 4 (1981)

    Google Scholar 

  4. 4.

    G. Ancellett, F. Ravetta, Appl. Opt. 37, 24 (1998)

    Article  Google Scholar 

  5. 5.

    M.H. Proffitt, R.J. McLaughlin, Rev. Sci. Instrum. 54, 1719 (1983)

    Article  ADS  Google Scholar 

  6. 6.

    F.K. Tittel, Y.A. Bakhirkin, R.F. Curl, A.A. Kosterev, M.R. McCurdy, S.G. So, G. Wysocki, Advanced Environmental Monitoring (Springer, Berlin, 2008)

    Google Scholar 

  7. 7.

    W.P. Arnott, H. Moosmüller, C.F. Rogers, T. Jin, R. Bruch, Atmos. Environ. 33, 2845 (1999)

    Article  Google Scholar 

  8. 8.

    M. Szakáll, Z. Bozóki, Á. Mohácsi, A. Varga, G. Szabó, Appl. Spectrosc. 58, 792 (2004)

    Article  ADS  Google Scholar 

  9. 9.

    C.A.M. Brenninkmeijer, P. Crutzen, F. Boumard, T. Dauer, B. Dix, R. Ebinghaus, D. Filippi, H. Fischer, H. Franke, U. Friess, J. Heintzenberg, F. Helleis, M. Hermann, H.H. Kock, C. Koeppel, J. Lelieveld, M. Leuenberger, B.G. Martinsson, S. Miemczyk, H.P. Moret, H.N. Nguyen, P. Nyfeler, D. Oram, D. O’Sullivan, S. Penkett, U. Platt, M. Pupek, M. Ramonet, B. Randa, M. Reichelt, T.S. Rhee, J. Rohwer, K. Rosenfeld, D. Scharffe, H. Schlager, U. Schumann, F. Slemr, D. Sprung, P. Stock, R. Thaler, F. Valentino, P. van Velthoven, A. Waibel, A. Wandel, K. Waschitschek, A. Wiedensohler, I. Xueref-Remy, A. Zahn, U. Zech, H. Ziereis, Atmos. Chem. Phys. 7, 4953 (2007)

    Article  ADS  Google Scholar 

  10. 10.

    A. Varga, Z. Bozóki, M. Szakáll, G. Szabó, Appl. Phys. B 85, 315 (2006)

    Article  ADS  Google Scholar 

  11. 11.

    Z. Filus, T. Ajtai, Z.L. Horváth, Z. Bozóki, G. Pap, T. Nagy, T. Katona, G. Szabó, Polym. Test. 26, 606 (2007)

    Article  Google Scholar 

  12. 12.

    H.A. Beck, R. Niessner, C. Haisch, Anal. Bioanal. Chem. 375, 1136 (2003)

    Google Scholar 

  13. 13.

    J.P. Besson, S. Schilt, F. Sauser, E. Rochat, P. Hamel, F. Sandoz, M. Nikles, L. Thevenaz, Appl. Phys. B 85, 343 (2006)

    Article  ADS  Google Scholar 

  14. 14.

    M.W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994)

    Google Scholar 

  15. 15.

    Z. Bozóki, Á. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, F.K. Tittel, Appl. Spectrosc. 56, 715 (2002)

    Article  ADS  Google Scholar 

  16. 16.

    T. Schmid, Anal. Bioanal. Chem. 384, 1071 (2006)

    Article  Google Scholar 

  17. 17.

    M.B. Pushkarsky, M.E. Webber, O. Baghdassarian, L.R. Narasimhan, C.K.N. Patel, Appl. Phys. B 75, 391 (2002)

    Article  ADS  Google Scholar 

  18. 18.

    Z. Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, Z. Bor, Sens. Actuators, B Chem. 91, 219 (2003)

    Article  Google Scholar 

  19. 19.

    A.H. Veres, F. Sarlós, A. Varga, G. Szabó, Z. Bozóki, G. Motika, J. Gyapjas, Spectrosc. Lett. 38, 377 (2005)

    Article  ADS  Google Scholar 

  20. 20.

    J. Sakuma, Y. Asakawa, M. Obara, Opt. Lett. 29, 92 (2004)

    Article  ADS  Google Scholar 

  21. 21.

    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), p. 80

    Google Scholar 

  22. 22.

    A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  23. 23.

    L. Grünhage, H.-D. Haenel, H.-J. Jäger, Environ. Pollut. 109, 373 (2000)

    Article  Google Scholar 

  24. 24.

    Z. Bozóki, T. Ajtai, M. Schnaiter, C. Linke, M. Vragel, Á. Filep, A.H. Veres, G. Szabó, Geophys. Res. Abstr. 10, EGU2008-A-04052 (2008)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Ajtai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ajtai, T., Filep, Á., Varga, A. et al. Ozone concentration-monitoring photoacoustic system based on a frequency-quadrupled Nd:YAG laser. Appl. Phys. B 101, 403–409 (2010). https://doi.org/10.1007/s00340-010-4174-8

Download citation

Keywords

  • Ozone
  • Optical Absorption
  • Ozone Concentration
  • PAC1
  • Electronic Unit