Skip to main content
Log in

Frequency stabilization of multiple lasers and Rydberg atom spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper we report details of the apparatus and experimental techniques used to excite Rydberg states of 7Li using multiple diode lasers. Special attention is paid to frequency stabilization of the lasers and we show how three lasers can be stabilized using the fluorescence from a single atomic state. Laser spectroscopy of the 8p,9p, and 11p–15p states is then performed to determine the quantum defects of these states. Our measurement precision exceeds that of previous measurements of these defects by as much as a factor of 25. This work substantially extends our previous measurement of the 10p quantum defect, and we compare our measured defects with recent theoretical calculations for the np states across the range 8≤n≤15. The agreement with theory is excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  2. E. Arimondo, M. Inguscio, P. Violino, Rev. Mod. Phys. 49, 31 (1977)

    Article  ADS  Google Scholar 

  3. M.L. Zimmerman, M.G. Littman, M.M. Kash, D. Kleppner, Phys. Rev. A 20, 2251 (1979)

    Article  ADS  Google Scholar 

  4. R. Hergenroder, D. Veza, K. Niemax, Spectrochim. Acta 48B, 589 (1993)

    ADS  Google Scholar 

  5. C.-H. Iu, G.D. Stevens, H. Metcalf, Appl. Optics 34, 2640 (1995)

    Article  ADS  Google Scholar 

  6. G.D. Stevens, C.-H. Iu, T. Bergeman, H.J. Metcalf, I. Seipp, K.T. Taylor, D. Delande, Phys. Rev. A 53, 1349 (1996)

    Article  ADS  Google Scholar 

  7. B.A. Bushaw, W. Nörtershäuser, G.W.F. Drake, H.-J. Kluge, Phys. Rev. A 75, 052503 (2007)

    Article  ADS  Google Scholar 

  8. P. Oxley, P. Collins, Phys. Rev. A 81, 024501 (2010)

    Article  ADS  Google Scholar 

  9. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  10. W. Jitschin, Appl. Phys. B 33, 7 (1984)

    Article  ADS  Google Scholar 

  11. H.R. Telle, Spectrochim. Acta Rev. 15, 301 (1993)

    Google Scholar 

  12. G. Bianchini, P. Cancio, F. Minardi, F.S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, Appl. Phys. B 66, 407 (1998)

    Article  ADS  Google Scholar 

  13. K.L. Corwin, Z.-T. Lu, C.F. Hand, R.J. Epstein, C.E. Wieman, Appl. Optics 37, 3295 (1998)

    Article  ADS  Google Scholar 

  14. C.P. Pearman, C.S. Adams, S.G. Cox, P.F. Griffin, D.A. Smith, I.G. Hughes, J. Phys. B 35, 5141 (2002)

    Article  ADS  Google Scholar 

  15. G. Ritt, G. Cennini, C. Geckeler, M. Weitz, Appl. Phys. B 79, 363 (2004)

    Article  Google Scholar 

  16. E.D. Van Ooijen, G. Katgert, P. Van der Straten, Appl. Phys. B 79, 57 (2004)

    Article  ADS  Google Scholar 

  17. J.A. Kerckhoff, C.D. Bruzewicz, R. Uhl, P.K. Majumder, Rev. Sci. Instrum. 76, 093108 (2005)

    Article  ADS  Google Scholar 

  18. R.W. France, Proc. R. Soc. Lond., Ser. A 129, 354 (1930)

    Article  ADS  Google Scholar 

  19. M.K. Ballard, R.A. Bernheim, P. Bicchi, Can. J. Phys. 79, 991 (2001)

    Article  ADS  Google Scholar 

  20. L.J. Radziemski, R. Engleman Jr., J.W. Brault, Phys. Rev. A 52, 4462 (1995)

    Article  ADS  Google Scholar 

  21. M. Anwar-ul-Haq, S. Mahmood, M. Riaz, R. Ali, M.A. Baig, J. Phys. B 38, S77 (2005)

    ADS  Google Scholar 

  22. C. Chen, Commun. Theor. Phys. 50, 733 (2008)

    Article  Google Scholar 

  23. R.M. Whitley, C.R. Stroud, Phys. Rev. A 14, 1498 (1976)

    Article  ADS  Google Scholar 

  24. C. Cohen-Tannoudji, S. Reynaud, J. Phys. B 10, 2311 (1977)

    Article  ADS  Google Scholar 

  25. C. Wei, D. Suter, A.S.M. Windsor, N.B. Manson, Phys. Rev. A 58, 2310 (1998)

    Article  ADS  Google Scholar 

  26. C. Mavroyannis, Appl. Phys. B 73, 39 (2001)

    ADS  Google Scholar 

  27. K. Kapale, M.O. Scully, S.-Y. Zhu, M. Suhail Zubairy, Phys. Rev. A 76, 023804 (2003)

    Article  ADS  Google Scholar 

  28. B.-Q. Ou, L.-M. Liang, C.-Z. Li, J. Phys. B 42, 205503 (2009)

    Article  ADS  Google Scholar 

  29. H.R. Gray, R.M. Whitley, C.R. Stroud, Opt. Lett. 3, 218 (1978)

    Article  ADS  Google Scholar 

  30. C.J. Sansonetti, B. Richou, R.E. Engleman, Phys. Rev. A 52, 2682 (1995)

    Article  ADS  Google Scholar 

  31. R. Sánchez, R. Sánchez, M. Žáková, Z. Andjelkovic, B.A. Bushaw, K. Dasgupta, G. Ewald, C. Geppert, H.-J. Kluge, J. Krämer, M. Nothhelfer, D. Tiedemann, D.F.A. Winters, W. Nörtershäuser, New J. Phys. 11, 073016 (2009)

    Article  Google Scholar 

  32. B.A. Bushaw, W. Nortershauser, G. Ewald, A. Dax, G.W.F. Drake, Phys. Rev. Lett. 91, 043004 (2003)

    Article  ADS  Google Scholar 

  33. I. Johansson, Ark. Fys. 15, 169 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Oxley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oxley, P., Collins, P. Frequency stabilization of multiple lasers and Rydberg atom spectroscopy. Appl. Phys. B 101, 23–31 (2010). https://doi.org/10.1007/s00340-010-4154-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4154-z

Keywords

Navigation