Skip to main content
Log in

NO excitation and thermal non-equilibrium within a flat plate boundary layer in an air plasma

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical emission spectroscopy experiments are carried out by recording the radiation from the γ transitions of nitrogen monoxide in an air inductively coupled plasma in interaction with a water-cooled metallic flat plate at moderate pressure. The calibrated results allow to derive the vibrational and rotational temperatures of the NO(A 2 Σ +) excited state as well as its densities in the free jet and within the boundary layer by comparison with calculated spectra. Those results are compared with previous ones concerning temperatures and densities of the ground states of the majority species (N2, O2 and NO) that were obtained by laser techniques. As for the NO(X 2 Π) ground state, vibration and rotation of the excited state are found out of equilibrium. The NO(A 2 Σ +) excited state is found to be populated by an energy transfer from the metastable N2(\(A^{3}\varSigma ^{+}_{u}\)). The steady state of the plasma allows using this property to derive N2(\(A^{3}\varSigma ^{+}_{u}\)) densities and N2 electronic excitation temperatures. Close to the wall, a production of excited NO by a catalytic process is also considered involving N2(\(A^{3}\varSigma ^{+}_{u}\)) as source of adsorbed atoms. The present results confirm that the kinetic temperature cannot be compared to the rotational temperature derived from optical emission spectroscopy in such plasma conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Park, J. Thermophys. Heat Transf. 7, 385 (1993)

    Article  ADS  Google Scholar 

  2. C. Park, R.L. Jaffe, H. Partridge, J. Thermophys. Heat Transf. 15, 76 (2001)

    Article  Google Scholar 

  3. S.M. Chauveau, C.O. Laux, J.D. Kelley, C.H. Kruger, AIAA Paper 2002-2229 (2002)

  4. S.M. Chauveau, J.D. Kelley, C.O. Laux, C.H. Kruger, AIAA Paper 2003-0137 (2003)

  5. A. Bultel, B.G. Chéron, A. Bourdon, O. Motapon, I.F. Schneider, Phys. Plasmas 13, 043502 (2006)

    Article  ADS  Google Scholar 

  6. A. Kolesnikov, M.I. Yakushin, I.S. Pershin, S.A. Vasil’evskii, O. Chazot, B. Vancrayenest, J. Muylaert, in Proceedings of the 4th European Symposium on Aerothermodynamics for Space Vehicles. SP487 (European Space Agency, Paris, 2007), pp. 481–488

    Google Scholar 

  7. B. Benstaali, P. Boubert, B.G. Chéron, A. Addou, J.L. Brisset, Plasma Proc. 22, 553 (2002)

    Article  Google Scholar 

  8. M. Balat-Pichelin, J.M. Badie, R. Berjoan, P. Boubert, Chem. Phys. 291, 181 (2003)

    Article  ADS  Google Scholar 

  9. M. Balat-Pichelin, L. Bedra, O. Gerasimova, P. Boubert, Chem. Phys. 340, 217 (2007)

    Article  ADS  Google Scholar 

  10. A.M. Gomes, J. Bacri, J.P. Sarrette, J. Salon, J. Anal. At. Spectrom 7, 1103 (1992)

    Article  Google Scholar 

  11. C. Laux, R. Gessman, C. Kruger, R. Roux, F. Michaud, S.P. Davis, J. Quant. Spectrosc. Radiat. Transf. 68, 473 (2001)

    Article  ADS  Google Scholar 

  12. C. Laux, T. Spence, C. Kruger, R. Zare, Plasma Sources Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  13. B. Michelt, G. Lins, R. Seeböck, J. Phys. D, Appl. Phys. 28, 2600 (1995)

    Article  ADS  Google Scholar 

  14. M. Winter, M. Auweter-Kürtz, in Proceedings of the 3rd European Symposium on Aerothermodynamics for Space Vehicles. SP426 (European Space Agency, Paris, 1999), pp. 429–436

    Google Scholar 

  15. D. Babikian, N. Gopaul, C. Park, J. Thermophys. Heat Transf. 8, 737 (1994)

    Article  ADS  Google Scholar 

  16. C. Park, M. Newfield, D. Fletcher, T. Gökçen, S. Sharma, J. Thermophys. Heat Transf. 12, 190 (1998)

    Article  Google Scholar 

  17. J.M. Lamet, Y. Babou, P. Rivière, M.Y. Perrin, A. Soufiani, J. Quant. Spectrosc. Radiat. Transf. 109, 235 (2008)

    ADS  Google Scholar 

  18. A. Desportes, Développement de techniques de mesure optiques pour qualifier les installations de type plasmatron: applications à des mesures de catalycité. PhD Thesis, Rouen, France (2004)

  19. D. Studer, P. Vervisch, J. Appl. Phys. 102, 033303 (2007)

    Article  ADS  Google Scholar 

  20. D. Studer, P. Boubert, P. Vervisch J. Phys. D, Appl. Phys. (2010, in press)

  21. C. Amiot, J. Mol. Spectrosc. 94, 150 (1982)

    Article  ADS  Google Scholar 

  22. J. Danielak, U. Domin, R. Kępa, M. Rytel, M. Zachwieja, J. Mol. Spectrosc. 181, 394 (1997)

    Article  ADS  Google Scholar 

  23. I. Kovács, Rotational Structure in the Spectra of Diatomic Molecules (Hilger, London, 1969)

    Google Scholar 

  24. J. Luque, D.R. Crosley, J. Chem. Phys. 111, 7405 (1999)

    Article  ADS  Google Scholar 

  25. B. van Ootegem, D. Conte, P. Tran, P. Vervisch, D. Studer, P. Régnier, C. Crespos, P. Larregaray, J.C. Rayez, L. Martin, in Proceedings of the 5th European Workshop on Thermal Protection Systems and Hot Structures SP631 (European Space Agency, Paris, 2007)

    Google Scholar 

  26. J.A. Drakes, W.K. McGregor, M.A. Nelius, AIAA Paper 1996-1880 (1996)

  27. S. De Benedictis, G. Dilecce, M. Simek, J. Phys. D, Appl. Phys. 30, 2887 (1997)

    Article  ADS  Google Scholar 

  28. J.M. Thomas, D.H. Katayama, Chem. Phys. Lett. 214, 250 (1993)

    Article  ADS  Google Scholar 

  29. J.M. Thomas, D.H. Katayama, Chem. Phys. Lett. 241, 583 (1995)

    Article  ADS  Google Scholar 

  30. L.G. Piper, L.M. Cowles, W.T. Rawlins, J. Chem. Phys. 85, 3369 (1986)

    Article  ADS  Google Scholar 

  31. M. Barbato, C. Bruno, in Molecular Physics and Hypersonics Flows, ed. by M. Capitelli. NATO ASI Series C, vol. 482 (1996), pp. 139–160

  32. D. Bose, G.V. Candler, J. Chem. Phys. 104, 2825 (1996)

    Article  ADS  Google Scholar 

  33. D. Bose, G.V. Candler, J. Chem. Phys. 107, 6136 (1997)

    Article  ADS  Google Scholar 

  34. T.B. Settersten, B.D. Patterson, J.A. Gray, J. Chem. Phys. 124, 234308 (2006)

    Article  ADS  Google Scholar 

  35. P.H. Paul, C.D. Carter, J.A. Gray, J.L. Durant, J.W. Thoman, M.R. Furlanetto, Correlations for the NO A 2 Σ + (v′=0) electronic quenching cross section. Technical report, Sandia National Laboratories, Livermore CA, USA (1995)

  36. J.A. Gray, Private communication (2008)

  37. I.A. Kossyi, A.Yu. Kostinsky, A.A. Matveyev, V.P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992)

    Article  ADS  Google Scholar 

  38. L.G. Piper, J. Chem. Phys. 98, 8560 (1993)

    Article  ADS  Google Scholar 

  39. P. Boubert, P. Vervisch, J. Chem. Phys. 112, 10482 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Boubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studer, D., Boubert, P. & Vervisch, P. NO excitation and thermal non-equilibrium within a flat plate boundary layer in an air plasma. Appl. Phys. B 101, 689–700 (2010). https://doi.org/10.1007/s00340-010-4145-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4145-0

Keywords

Navigation