Skip to main content
Log in

Noise reduction in optically pumped magnetometer assemblies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B 0 and B 1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Koch, IEEE Trans. Appl. Supercond. 11, 49 (2001)

    Article  Google Scholar 

  2. R. Wynands, A. Nagel, Appl. Phys. B 68, 1 (1999)

    Article  ADS  Google Scholar 

  3. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, Nature 422, 596 (2003)

    Article  ADS  Google Scholar 

  4. W.E. Bell, A.L. Bloom, Phys. Rev. Lett. 6, 280 (1961)

    Article  ADS  Google Scholar 

  5. D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys. 74, 1153 (2002)

    Article  ADS  Google Scholar 

  6. A.L. Bloom, Appl. Opt. 1, 61 (1962)

    Article  ADS  Google Scholar 

  7. E.B. Alexandrov, M.V. Balabas, A.K. Vershovski, A.E. Ivanov, N.N. Yakobson, V.L. Velichanskii, N.V. Senkov, Opt. Spectrosc. 78, 292 (1995)

    ADS  Google Scholar 

  8. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, A. Weis, Eur. Phys. J. D 38, 239 (2006)

    Article  ADS  Google Scholar 

  9. G. Bison, R. Wynands, A. Weis, J. Opt. Soc. Am. B 22, 77 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Budker, M.V. Romalis, Nat. Phys. 3, 227 (2007)

    Article  Google Scholar 

  11. M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V. Yashchuk, Phys. Rev. Lett. 96, 173002 (2004)

    Article  ADS  Google Scholar 

  12. J.L. Sorensen, B. Julsgaard, Ch. Schori, E.S. Polzik, Spectrochim. Acta B 58, 999 (2003)

    Article  ADS  Google Scholar 

  13. E.B. Alexandrov, M.V. Balabas, A.K. Vershovski, A.S. Pazgalev, Tech. Phys. 49, 779 (2004)

    Article  Google Scholar 

  14. N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, A. Weis, Appl. Phys. B 96, 763 (2009)

    Article  ADS  Google Scholar 

  15. A. Chwala, V. Schultze, R. Stolz, J. Ramos, R. IJsselsteijn, H.-G. Meyer, D. Kretzschmar, Physica C 354, 45 (2001)

    Article  ADS  Google Scholar 

  16. S. Groeger, A.S. Pazgalev, A. Weis, Appl. Phys. B 80, 645 (2005)

    Article  ADS  Google Scholar 

  17. J.C. Camparo, J. Opt. Soc. Am. B 15, 1177 (1998)

    Article  ADS  Google Scholar 

  18. J. Kitching, H.G. Robinson, L. Hollberg, S. Knappe, R. Wynands, J. Opt. Soc. Am. B 18, 1676 (2001)

    Article  ADS  Google Scholar 

  19. J.G. Coffer, M. Anderson, J.C. Camparo, Phys. Rev. A 65, 033807 (2002)

    Article  ADS  Google Scholar 

  20. M. Rosenbluth, V. Shah, S. Knappe, J. Kitching, Opt. Express 14, 6588 (2006)

    Article  ADS  Google Scholar 

  21. V. Gerginov, S. Knappe, V. Shah, L. Hollberg, J. Kitching, IEEE Trans. Instrum. Meas. 57, 1357 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Schultze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultze, V., IJsselsteijn, R. & Meyer, HG. Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 100, 717–724 (2010). https://doi.org/10.1007/s00340-010-4084-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4084-9

Keywords

Navigation