Skip to main content
Log in

Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the observation of the modulation instability induced by cross-phase modulation in a dual-wavelength operation dispersion-managed soliton fiber ring laser with net negative cavity dispersion. The passively mode-locked operation is achieved by using a nonlinear polarization rotation technique. A new type of dual-wavelength operation, where one is femtosecond pulse and the other is picosecond pulse operation, is obtained by properly rotating the polarization controllers. When the dual-wavelength pulses are simultaneously circulating in the laser ring cavity, a series of stable modulation sidebands appears in the picosecond pulse spectrum at longer wavelength with lower peak power due to modulation instability induced by cross-phase modulation between the two lasing wavelengths. Moreover, the intensities and wavelength shifts of the modulation sidebands can be tuned by varying the power of the femtosecond pulse or the lasing central wavelengths of the dual-wavelength pulses. The theoretical analysis of the modulation instability induced by cross-phase modulation in our fiber laser is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1993)

    Google Scholar 

  2. G.P. Agrawal, Phys. Rev. Lett. 59, 880 (1987)

    Article  ADS  Google Scholar 

  3. P.T. Dinda, G. Millot, E. Seve, M. Haelterman, Opt. Lett. 21, 1640 (1996)

    Article  ADS  Google Scholar 

  4. R. Hui, M. O’Sullivan, A. Robinson, M. Taylor, J. Lightwave Technol. 15, 1071 (1997)

    Article  ADS  Google Scholar 

  5. T. Tanemura, K. Kikuchi, J. Opt. Soc. Am. B 20, 2502 (2003)

    Article  ADS  Google Scholar 

  6. W.C. Xu, S.M. Zhang, W.C. Chen, A.P. Luo, S.H. Liu, Opt. Commun. 199, 355 (2001)

    Article  ADS  Google Scholar 

  7. G. Rossi, D. Amans, E. Brainis, M. Haelterman, Ph. Emplit, S. Massar, Opt. Lett. 30, 1051 (2005)

    Article  ADS  Google Scholar 

  8. P. Kaewplung, T. Angkaew, K. Kikuchi, J. Lightwave Technol. 20, 1895 (2002)

    Article  ADS  Google Scholar 

  9. X. Dai, Y. Xiang, S. Wen, D. Fan, J. Opt. Soc. Am. B 26, 564 (2009)

    Article  ADS  Google Scholar 

  10. L.A. Ostrovskii, Zh. Eksp. Teor. Fiz. 51, 1189 (1966) [Sov. Phys. JETP 24, 797 (1967)]

    Google Scholar 

  11. A. Hasegawa, W.F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980)

    Article  ADS  Google Scholar 

  12. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986)

    Article  ADS  Google Scholar 

  13. J.S.Y. Chen, G.K.L. Wong, S.G. Murdoch, R.J. Kruhlak, R. Leonhardt, J.D. Harvey, N.Y. Joly, J.C. Knight, Opt. Lett. 31, 873 (2006)

    Article  ADS  Google Scholar 

  14. A.T. Nguyen, K.P. Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J.V. Erps, H. Thienpont, S. Massar, Opt. Express 14, 8290 (2006)

    Article  ADS  Google Scholar 

  15. E.E. Serebryannikov, S.O. Konorov, A.A. Ivanov, M.V. Alfimov, M. Scalora, A.M. Zheltikov, Phys. Rev. E 72, 027601 (2005)

    Article  ADS  Google Scholar 

  16. S.O. Konorov, D.A. Akimov, A.A. Ivanov, M.V. Alfimov, K.V. Dukel’sk II, A.V. Khokhlov, V.S. Shevandin, Yu.N. Kondrat’ev, A.M. Zheltikov, Appl. Phys. B 80, 437 (2005)

    Article  ADS  Google Scholar 

  17. I.W. Hsieh, X. Chen, J.I. Dadap, N.C. Panoiu, R.M. Osgood Jr., S.J. McNab, Y.A. Vlasov, Opt. Express 15, 1135 (2007)

    Article  ADS  Google Scholar 

  18. D.J. Richardson, R.I. Laming, D.N. Payne, V.I. Matsas, M.W. Phillips, Electron. Lett. 27, 1451 (1991)

    Article  Google Scholar 

  19. S.M.J. Kelly, Electron. Lett. 28, 806 (1992)

    Article  Google Scholar 

  20. Z.C. Luo, A.P. Luo, W.C. Xu, C.X. Song, Y.X. Gao, W.C. Chen, Laser Phys. Lett. 6, 582 (2009)

    Article  Google Scholar 

  21. D.Y. Tang, W.S. Man, H.Y. Tam, M.S. Demokan, Phys. Rev. A 61, 023804 (2000)

    Article  ADS  Google Scholar 

  22. Z.C. Luo, W.C. Xu, C.X. Song, A.P. Luo, W.C. Chen, Eur. Phys. J. D 54, 693 (2009)

    Article  ADS  Google Scholar 

  23. S. Pan, J.P. Yao, Opt. Express 17, 5414 (2009)

    Article  ADS  Google Scholar 

  24. J.B. Schlager, S. Kawanishi, M. Saruwatari, Electron. Lett. 27, 2072 (1991)

    Article  Google Scholar 

  25. H. Zhang, D.Y. Tang, X. Wu, L.M. Zhao, Opt. Express 17, 12692 (2009)

    Article  ADS  Google Scholar 

  26. Y.D. Gong, X.L. Tian, M. Tang, P. Shum, M.Y.W. Chia, V. Paulose, J. Wu, K. Xu, Opt. Commun. 265, 355 (2001)

    Google Scholar 

  27. A.S. Gouveia-Neto, M.E. Faldon, A.S.B. Sombra, P.G.J. Wigley, J.R. Taylor, Opt. Lett. 13, 901 (1988)

    Article  ADS  Google Scholar 

  28. A.D. Kim, J.N. Kutz, D.J. Muraki, IEEE J. Quantum Electron. 36, 465 (2000)

    Article  ADS  Google Scholar 

  29. Z.C. Luo, W.C. Xu, C.X. Song, A.P. Luo, W.C. Chen, Chin. Phys. B 18, 2328 (2009)

    Article  ADS  Google Scholar 

  30. D.Y. Tang, L.M. Zhao, B. Zhao, A.Q. Liu, Phys. Rev. A 72, 043816 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-P. Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, ZC., Luo, AP., Xu, WC. et al. Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser. Appl. Phys. B 100, 811–820 (2010). https://doi.org/10.1007/s00340-010-4068-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4068-9

Keywords

Navigation