Skip to main content
Log in

Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Light absorption measurements of nominally undoped congruent lithium niobate crystals (CLN) as well as 5 mol% magnesium-oxide-doped lithium niobate (MgO:LN) crystals were performed in the light wavelength range of 350 to 800 nm. Absorption spectra reveal that—besides iron (Fe) impurities—chromium (Cr) impurities of less than 0.5 wt. ppm concentration contribute significantly to the total optical absorption in the CLN crystals with a maximum of 0.035 cm−1 around 500 nm. The axial distribution of Cr within a CLN boule is examined, revealing that the bottom part of the boule contains less Cr and therefore light absorption is reduced as well. In the case of the MgO:LN crystals, Cr impurities also contribute significantly to the total optical absorption, which is on the order of 0.025 cm−1 for ordinarily polarized light and 0.015 cm−1 for extraordinarily polarized light around 500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Bryan, R. Gerson, H.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984)

    Article  ADS  Google Scholar 

  2. G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, Opt. Lett. 22, 1834 (1997)

    Article  ADS  Google Scholar 

  3. S.T. Lin, Y. Lin, T.D. Wang, Y.C. Huang, Opt. Express 18, 1323 (2010)

    Article  ADS  Google Scholar 

  4. F. Jermann, K. Buse, Appl. Phys. B 59, 437 (1994)

    Article  ADS  Google Scholar 

  5. K. Buse, Appl. Phys. B 65, 391 (1997)

    Article  Google Scholar 

  6. D.H. Jundt, M.C.C. Kajiyama, D. Djukic, M. Falk, J. Cryst. Growth 312, 1109 (2009)

    Article  ADS  Google Scholar 

  7. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, M. Wöhlecke, Appl. Phys. Lett. 70, 2801 (1997)

    Article  ADS  Google Scholar 

  8. D. Zelmon, D. Small, D. Jundt, J. Opt. Soc. Am. B 12, 3319 (1997)

    Article  ADS  Google Scholar 

  9. J. Workman Jr., Applied Spectroscopy (Academic Press, San Diego, 1998)

    Google Scholar 

  10. A.M. Glass, J. Chem. Phys. 50, 1501 (1969)

    Article  ADS  Google Scholar 

  11. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, Appl. Phys. 12, 355 (1977)

    Article  ADS  Google Scholar 

  12. M.G. Clark, F.J. DiSalvo, A.M. Glass, G.E. Peterson, J. Chem. Phys. 59, 6209 (1973)

    Article  ADS  Google Scholar 

  13. L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez, Ferroelectrics 26, 823 (1980)

    Article  Google Scholar 

  14. J.R. Schwesyg, H.A. Eggert, K. Buse, E. Sliwinska, S. Khalil, M. Kaiser, K. Meerholz, Appl. Phys. B 89, 15 (2007)

    Article  ADS  Google Scholar 

  15. K. Peithmann, J. Hukriede, K. Buse, E. Krätzig, Phys. Rev. B 61, 4615 (2000)

    Article  ADS  Google Scholar 

  16. J. Diaz-Caro, J. Garcia-Sole, D. Bravo, J.A. Sanz-Garcia, F.J. Lopez, F. Jaque, Phys. Rev. B 54, 13042 (1996)

    Article  ADS  Google Scholar 

  17. A. Feisst, A. Räuber, J. Cryst. Growth 63, 337 (1983)

    Article  ADS  Google Scholar 

  18. D. Von der Linde, A.M. Glass, K.F. Rodgers, J. Appl. Phys. 47, 217 (1976)

    Article  ADS  Google Scholar 

  19. Y. Ming, E. Krätzig, R. Orlowski, Phys. Status Solidi A 92, 221 (1985)

    Article  ADS  Google Scholar 

  20. J.M. Almeida, G. Boyle, A.P. Leite, R.M. De La Rue, C.N. Ironside, F. Caccavale, P. Chakraborty, I. Mansour, J. Appl. Phys. 78, 2193 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Schwesyg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwesyg, J.R., Kajiyama, M.C.C., Falk, M. et al. Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range. Appl. Phys. B 100, 109–115 (2010). https://doi.org/10.1007/s00340-010-4063-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4063-1

Keywords

Navigation