Skip to main content
Log in

Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Multi-mode absorption spectroscopy, MUMAS, has been combined with the techniques of wavelength modulation spectroscopy, WMS, and cavity enhanced absorption spectroscopy, CEAS, to record multiple molecular transitions using a single laser and a single detector. MUMAS signals were recorded using a multi-mode diode laser of the A-band \(b^{1}\varSigma _{g}^{+}\leftarrow X^{3}\varSigma _{g}^{-}\) of molecular oxygen at 760 nm. Direct MUMAS and WMS-MUMAS signals were recorded using a White cell for air and pure oxygen for pressures in the range 0 to 1 bar. CEAS-MUMAS signals were recorded with and without WMS in an open enhancement cavity containing laboratory air. Enhancement of the signal-to-noise ratio has been obtained demonstrating the potential for increased detection sensitivity for gas-sensing applications of MUMAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Allen, Meas Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  2. P. Werle, K. Maurer, R. Kormann, R. Mücke, B. Jänke, Opt. Lasers Eng. 37, 101 (2002)

    Article  Google Scholar 

  3. P. Hering, J.P. Lay, S. Stry, Laser in Environmental and Life Sciences. Modern Analytical Methods, XXIV (2004), p. 345

  4. An up-to-date indication of the range of applications may be found in the reviews and papers presented at the TDLS Conference 2007. Appl. Phys. B 90(2) (2008)

  5. R.K. Hanson, D.S. Baer, B.K. McMillin, P. Arroyo, Ber. Bunseges. Phys. Chem. 97, 1548 (1993)

    Google Scholar 

  6. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.J.M. Gopaul, Opt. Lett. 19, 1900 (1994)

    Article  ADS  Google Scholar 

  7. D.B. Oh, M.E. Paige, D.S. Bomse, Appl. Opt. 37, 2499 (1998)

    Article  ADS  Google Scholar 

  8. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, S. Svanberg, Appl. Phys. Lett. 86, 184102 (2005)

    Article  ADS  Google Scholar 

  9. X. Lou, G. Somesfalean, B. Chen, Z. Zhang, Appl. Opt. 48, 990 (2009)

    Article  ADS  Google Scholar 

  10. Y. Arita, P. Ewart, Opt. Commun. 281, 2561 (2008)

    ADS  Google Scholar 

  11. Y. Arita, R. Stevens, P. Ewart, Appl. Phys. B 90, 205 (2008)

    Article  ADS  Google Scholar 

  12. Y. Arita, P. Ewart, Opt. Express 16, 4437 (2008)

    Article  ADS  Google Scholar 

  13. M. Cardona, Modulation Spectroscopy, Suppl. 11 of Solid State Physics, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York, 1969)

    Google Scholar 

  14. P.W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, Spectrochim. Acta A, Mol. Biomol. Spectrosc. 60, 1685 (2004)

    Article  ADS  Google Scholar 

  15. E.D. Hinkley, P.L. Kelley, Science 171, 635 (1971)

    Article  ADS  Google Scholar 

  16. E.I. Moses, C.L. Tang, Opt. Lett. 1, 115 (1977)

    Article  ADS  Google Scholar 

  17. E.A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G.C. Bjorklund, J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983)

    Article  ADS  Google Scholar 

  18. P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001)

    Article  ADS  Google Scholar 

  19. J.U. White, J. Opt. Soc. Am. 32, 285 (1942)

    Article  ADS  Google Scholar 

  20. D. Herriot, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)

    Article  ADS  Google Scholar 

  21. D.R. Herriot, H.J. Schulte, Appl. Opt. 4, 883 (1965)

    Article  ADS  Google Scholar 

  22. B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)

    Article  ADS  Google Scholar 

  23. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  24. J.J. Scherer, J.B. Paul, A. O’Keefe, R. Saykally, Chem. Rev. 97, 25 (1997)

    Article  Google Scholar 

  25. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  26. A. O’Keefe, Chem. Phys. Lett. 293, 331 (1998)

    Article  ADS  Google Scholar 

  27. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)

    Article  ADS  Google Scholar 

  28. M. Mazurenka, A. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem. Sect. C 101, 100 (2005)

    Article  Google Scholar 

  29. K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, J. Lightwave Technol. 25, 3114 (2007)

    Article  ADS  Google Scholar 

  30. A. Hutchinson, D.Ph. Thesis, University of Oxford, 2006

  31. P. Werle, Spectrochim. Acta A 54, 197 (1998)

    Article  Google Scholar 

  32. J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977)

    Article  ADS  Google Scholar 

  33. M.L. Hamilton, R. Peverall, G.A.D. Ritchie, L.J. Thornton, J.H. van Helden, Appl. Phys. B 97, 715 (2009)

    Article  ADS  Google Scholar 

  34. J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, M.L., Ritchie, G.A.D., Arita, Y. et al. Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques. Appl. Phys. B 100, 665–673 (2010). https://doi.org/10.1007/s00340-010-4040-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4040-8

Keywords

Navigation