Skip to main content
Log in

Tunable diode laser spectroscopy of benzene near 1684 nm with a low-temperature VCSEL

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the application of a long-wavelength vertical-cavity surface-emitting laser (VCSEL) with extended tuning range to the detection of benzene vapor at atmospheric pressure. A benzene absorption feature centered at 1684.24 nm was accessed by reducing the heat sink temperature of a VCSEL designed for room-temperature operation to −55°C. This allowed us to increase the injection current and thus to extend a single-scan tuning interval up to 46.4 cm−1 or 13.2 nm around a central wavelength of 1687.4 nm. Five absorption lines of methane in the 5903–5950 cm−1 range could be acquired within single laser scans at a repetition rate of 500 Hz. A benzene absorption feature between 5926 and 5948 cm−1 was recorded for concentration measurements at atmospheric pressure using a single-pass 1.2 m absorption cell. A 50 ppmv mixture of CH4 in N2 was introduced into the cell along with benzene vapor to calibrate benzene concentration measurements. Benzene mixing ratios down to ∼90 ppmv were measured using a direct absorption technique. The minimum detectable absorbance and detection limit of benzene were estimated to be ∼10−4 and 30 ppmv, respectively. Using the wavelength modulation technique, we measured a second harmonic sensor response to benzene vapor absorption in air at atmospheric pressure as a function of modulation index. We conclude that a low-temperature monolithic VCSEL operating near 1684 nm can be employed in compact benzene sensors with a detection limit in the sub-ppm range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Capleton, L. Levy, Chem. Biol. Inter. 153–154, 43 (2005)

    Article  Google Scholar 

  2. J. Jeffers, C. Roller, K. Namjou, M. Evans, L. MsSpadden, J. Grego, P. MsCann, Anal. Chem. 76, 424 (2004)

    Article  Google Scholar 

  3. B. Patterson, J. Lenney, W. Sibbett, B. Hirst, N. Hedges, M. Padgett, Appl. Opt. 37, 3172 (1998)

    Article  ADS  Google Scholar 

  4. J. Berger, V. Pustogov, Infrared Phys. Technol. 37, 163 (1996)

    Article  ADS  Google Scholar 

  5. J. Waschull, B. Sumpf, Y. Heiner, H.-D. Kronfeldt, Infrared Phys. Technol. 37, 193 (1996)

    Article  ADS  Google Scholar 

  6. S.T. Sanders, D.W. Mattison, Lin Ma, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 72, 865 (2001)

    ADS  Google Scholar 

  7. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.-C. Amann, F. Winter, Appl. Phys. B 76, 603 (2003)

    Article  ADS  Google Scholar 

  8. A. Lytkine, A. Lim, J. Bacque, W. Jäger, J. Tulip, Appl. Phys. B 89, 579 (2006)

    ADS  Google Scholar 

  9. G. Herzberg, Molecular Spectra and Molecular Structure. II Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945)

    Google Scholar 

  10. S. Sharpe, T. Johnson, R. Sams, P. Chu, G. Rhoderick, P. Johnson, Appl. Spectrosc. 58, 1452 (2004)

    Article  ADS  Google Scholar 

  11. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  12. G. Böhm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, M.-C. Amann, J. Crystal Growth 251, 748 (2003)

    Article  Google Scholar 

  13. C. Lauer, M. Ortsiefer, R. Shau, J. Rosskopf, G. Bohm, R. Meyer, M.C. Amann, Phys. Stat. Sol. (c) 1, 2183 (2004)

    Article  Google Scholar 

  14. A. Lytkine, W. Jäger, J. Tulip, Opt. Eng. 45, 044301-1 (2006)

    Article  ADS  Google Scholar 

  15. A. Lytkine, W. Jäger, J. Tulip, Spectrochim. Acta A 63, 940 (2006)

    Article  Google Scholar 

  16. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lytkine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lytkine, A., Lim, A., Jäger, W. et al. Tunable diode laser spectroscopy of benzene near 1684 nm with a low-temperature VCSEL. Appl. Phys. B 99, 825–832 (2010). https://doi.org/10.1007/s00340-010-4024-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4024-8

Keywords

Navigation