Skip to main content
Log in

Atomic frequency offset locking in a Λ type three-level Doppler broadened Cs system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We here present a comparative study of frequency stabilities of pump and probe lasers coupled at a frequency offset generated by coherent photon-atom interaction. Pump-probe spectroscopy of the Λ configuration in D2 transition of cesium is carried out to obtain sub-natural (∼2 MHz) electromagnetically induced transparency (EIT) and sub-Doppler (∼10 MHz) Autler-Townes (AT) resonance. The pump laser is locked on the saturated absorption spectrum (SAS, ∼13 MHz) and the probe laser is successively stabilized on EIT and AT signals. Frequency stabilities of pump and probe lasers are calculated in terms of Allan variance σ(2,τ) by using the frequency noise power spectrum. It is found that the frequency stability of the probe stabilized on EIT is superior (σ∼2×10−13) to that of SAS locked pump laser (σ∼10−12), whereas the performance of the AT stabilized laser is inferior (σ∼6×10−12). This contrasting behavior is discussed in terms of the theme of conventional master-slave offset locking scheme and the mechanisms underlying the EIT and sub-Doppler AT resonances in a Doppler broadened atomic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arimondo, Progress in Optics, vol. XXXV (Elsevier Science, Amsterdam, 1996), p. 258

    Google Scholar 

  2. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  3. R. Wynands, A. Nagel, Appl. Phys. B 68, 1 (1999)

    Article  ADS  Google Scholar 

  4. I. Mazels, B. Matisov, E. Cerboneschi, E. Arimondo, Phys. Lett. A 229, 77 (1997)

    Article  ADS  Google Scholar 

  5. S. Harris, Phys. Rev. Lett. 62, 1033 (1989)

    Article  ADS  Google Scholar 

  6. J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000)

    Article  Google Scholar 

  7. S. Knappe, V. Shah, P.D. Schwindt, L. Hollberg, J. Kitching, L. Liew, J. Moreland, Appl. Phys. Lett. 85, 1460 (2004)

    Article  ADS  Google Scholar 

  8. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, R. Wynands, Europhys. Lett. 54, 323 (2001)

    Article  ADS  Google Scholar 

  9. H.S. Moon, L. Lee, K. Kim, J.B. Kim, Appl. Phys. Lett. 84, 3001 (2004)

    Article  ADS  Google Scholar 

  10. S.C. Bell, D.M. Heywood, J.D. White, J.D. Close, R.E. Scholten, Appl. Phys. Lett. 90, 171120 (2007)

    Article  ADS  Google Scholar 

  11. M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D.F. Phillips, R.L. Walsworth, Phys. Rev. A 79, 053833 (2009)

    Article  ADS  Google Scholar 

  12. U.D. Rapol, A. Wasan, V. Natarajan, Phys. Rev. A 67, 053802 (2003)

    Article  ADS  Google Scholar 

  13. Y. Zhu, T.N. Wasserlauf, Phys. Rev. A 54, 3653 (1996)

    Article  ADS  Google Scholar 

  14. J. Wang, Y. Wang, S. Yan, T. Liu, T. Zhang, Appl. Phys. B 78, 217 (2004)

    Article  ADS  Google Scholar 

  15. K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. QE-23, 388 (1987)

    Article  ADS  Google Scholar 

  16. D.J. Fullton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn, Phys. Rev. A 52, 2302 (1995)

    Article  ADS  Google Scholar 

  17. J. Gea-Banacloche, Y. Li, S. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995)

    Article  ADS  Google Scholar 

  18. G. Vemuri, G.S. Agarwal, B.D. Nageswara Rao, Phys. Rev. A 53, 2842 (1996)

    Article  ADS  Google Scholar 

  19. T. Day, E.K. Gustafson, R.L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992)

    Article  ADS  Google Scholar 

  20. H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, Rev. Sci. Instrum. 68, 1 (1997)

    Article  ADS  Google Scholar 

  21. M. Vainio, M. Merimaa, E. Ikonen, Sci. Technol. 16, 1305 (2005)

    ADS  Google Scholar 

  22. D.S. Elliot, R. Roy, S.J. Smith, Phys. Rev. A 26, 12 (1982)

    Article  ADS  Google Scholar 

  23. J. Rutman, F.L. Walls, Proc. IEEE 79, 952 (1991)

    Article  ADS  Google Scholar 

  24. J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunical, J.A. Mullen, W.L. Smith, R. Sydnor, R.F. Vessot, G.M.R. Winkler, IEEE Trans. Instrum. Meas. IM-20, 105 (1971)

    Google Scholar 

  25. A. Ray, Can. J. Phys. 86, 351 (2008)

    Article  ADS  Google Scholar 

  26. A. Javan, O. Korcharovskaya, H. Lee, M.O. Scully, Phys. Rev. A 66, 013805 (2002)

    Article  ADS  Google Scholar 

  27. H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan, Appl. Phys. B 76, 33 (2003)

    Article  ADS  Google Scholar 

  28. A.W. Brown, M. Xiao, Phys. Rev. A 70, 053830 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kale, Y.B., Ray, A., D’Souza, R. et al. Atomic frequency offset locking in a Λ type three-level Doppler broadened Cs system. Appl. Phys. B 100, 505–514 (2010). https://doi.org/10.1007/s00340-010-3944-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3944-7

Keywords

Navigation