Skip to main content

Combined two-dimensional velocity and temperature measurements using a high-speed camera and luminescent particles

Abstract

This paper proposes a combined method for two-dimensional temperature and velocity measurements using temperature sensitive particles (TSParticles), a pulsed ultraviolet (UV) laser and a single high-speed camera. TSParticles were synthesized using ion-exchange particles and Eu(TTA) luminescent dye. The size and material of the particles for synthesizing TSParticles are selectable. TSParticles respond to temperature changes in a flow and can also serve as tracers for the velocity field. TSParticles were seeded into a heated water flow in a complex-shaped channel constructed of MEXFLON resin, which has a refractive index exactly equal to that of water. Particle images of flow beyond the structure can be recorded without any distortion. The TSParticles were excited by the UV pulsed laser and the luminescence from the TSParticles were recorded at 40,000 frames per second as sequential images for a lifetime-based temperature analysis. Another advantage of our approach is that high time-resolved PIV can be carried out without a high-frequency laser. The recorded images were also used for the particle image velocimetry (PIV) calculation.

This is a preview of subscription content, access via your institution.

References

  1. S. Tavoularis, D. Chang, in Proc. 15th ICONE, ICONE15-10389 (2007)

  2. T. Uwaba, M. Ito, S. Ukai, M. Pelletier, Nucl. Sci. Technol. 42(7), 608 (2005)

    Article  Google Scholar 

  3. R. Gajapathy, K. Velusamy, P. Selvaraj, P. Chellapandi, S.C. Chetal, Nucl. Eng. Des. 237(24), 2332 (2007)

    Article  Google Scholar 

  4. W. Raza, K.Y. Kim, Nucl. Eng. Des. 238(6), 1332 (2008)

    Article  Google Scholar 

  5. V. Vonka, Nucl. Eng. Des. 106, 209 (1998)

    Article  Google Scholar 

  6. M.H. Chun, K.W. Seo, Ann. Nucl. Energy 28, 1683 (2001)

    Article  Google Scholar 

  7. J. Coppeta, C. Rogers, Exp. Fluids 25, 1 (1998)

    Article  Google Scholar 

  8. J. Sakakibara, R.J. Adrian, Exp. Fluids 26, 7 (1999)

    Article  Google Scholar 

  9. J. Sakakibara, R.J. Adrian, Exp. Fluids 37(3), 331 (2004)

    Article  Google Scholar 

  10. S. Someya, S. Bando, Y. Song, B. Chen, M. Nishio, Int. J. Heat Mass Transfer 8(12), 2508 (2005)

    Article  Google Scholar 

  11. M. Hoffmann, M. Schluter, N. Rabiger, Chem. Eng. Sci. 61, 2968 (2006)

    Article  Google Scholar 

  12. C. Cardenas, R. Suntz, J.A. Denev, H. Bockhorn, Appl. Phys. B 88, 581 (2007)

    Article  ADS  Google Scholar 

  13. S. Funatani, N. Fujisawa, H. Ikeda, Meas. Sci. Technol. 15, 983 (2004)

    Article  ADS  Google Scholar 

  14. S.D. Alaruri, A.J. Brewington, M.A. Thomas, J.A. Miller, IEEE Trans. Instrum. Meas. 42(3), 735 (1993)

    Article  Google Scholar 

  15. B. Zelelow, G.E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Sens. Actuators B 96, 304 (2003)

    Article  Google Scholar 

  16. J. Hradil, C. Davis, K. Mongey, C. McDonagh, B.D. MacCraith, Meas. Sci. Technol. 13, 1552 (2002)

    Article  ADS  Google Scholar 

  17. G. Holst, O. Kohls, I. Klimant, B. Konig, M. Kuhl, T. Richter, Sens. Actuators B 51, 163 (1998)

    Article  Google Scholar 

  18. G. Holst, B. Grunwald, Sens. Actuators B 74, 78 (2001)

    Article  Google Scholar 

  19. A. Omrane, F. Ossler, M. Alden, Exp. Thermal Fluid Sci. 28, 669 (2004)

    Article  Google Scholar 

  20. A. Omrane, G. Sarner, M. Alden, Appl. Phys. B 79, 431 (2004)

    Article  Google Scholar 

  21. A.H. Khalid, K. Kontis, Meas. Sci. Technol 20, 025305 (2009)

    Article  ADS  Google Scholar 

  22. T. Kissel, E. Baum, A. Dreizler, J. Brubach, Appl. Phys. B (2009). doi:10.1007/s00340-009-3626-5

    Google Scholar 

  23. S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68(7), 2615 (1997)

    Article  ADS  Google Scholar 

  24. A.H. Khalid, K. Kontis, Sensors 8, 5673 (2008)

    Article  Google Scholar 

  25. A. Omrane, P. Pettersson, M. Alden, M.A. Linne, Appl. Phys. B 92, 99 (2008)

    Article  ADS  Google Scholar 

  26. H. Hu, M. Koochesfahani, Meas. Sci. Technol. 17, 1269 (2006)

    Article  ADS  Google Scholar 

  27. B. Bai, J. Basu, N. Vasantharajan, J. Lumin. 128, 1701 (2008)

    Article  Google Scholar 

  28. M.T. Albelda, E. Garca-Espaa, L. Gil, J.C. Lima, C. Lodeiro, J.S. Melo, M.J. Melo, A.J. Parola, F. Pina, C. Soriano, Phys. Chem. B 107(27), 6573 (2003)

    Article  Google Scholar 

  29. A. Mills, C. Tommons, R.T. Baily, M.C. Tedford, P.J. Crilly, The Analyst 131, 495 (2006)

    Article  ADS  Google Scholar 

  30. J. Brubach, J. Janicka, A. Dreizler, Opt. Laser Eng 47, 75 (2009)

    Article  Google Scholar 

  31. L.M. Coyle, M. Gouterman, Sens. Actuators B 61, 92 (1999)

    Article  Google Scholar 

  32. S. Nagl, M.I.J. Stich, M. Schaferling, O.S. Wolfbeis, Anal. Bioanal. Chem. 393, 1199 (2009)

    Article  Google Scholar 

  33. D. Ochi, S. Someya, K. Okamoto, H. Ohshima, in Proc. NTHAS6, N6P1155 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Someya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Someya, S., Ochi, D., Li, Y. et al. Combined two-dimensional velocity and temperature measurements using a high-speed camera and luminescent particles. Appl. Phys. B 99, 325–332 (2010). https://doi.org/10.1007/s00340-010-3926-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3926-9

Keywords

  • Particle Image Velocimetry
  • Decay Constant
  • Particle Image Velocimetry Measurement
  • Interrogation Window
  • Interrogation Window Size